In vitro metabolism of red clover isoflavones in rumen fluid.

J Anim Physiol Anim Nutr (Berl)

Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.

Published: November 2020

The degradation of red clover isoflavones was studied in vitro using a rumen fluid buffer system. Various amounts of red clover extract (5-75 mg) together with hay or concentrate-rich diet were added to 40 ml of rumen fluid obtained from non-lactating and lactating dairy cows, respectively, and incubated for 0, 3, 6, 12 or 24 hr. Following incubation, concentrations of daidzein, genistein, formononetin, biochanin A and equol were determined in the samples. After 3 hr of incubation, isoflavone metabolism and equol production could be observed. The results obtained indicate that hay diet provides better conditions for isoflavone metabolism, as concentrations of daidzein, formononetin and biochanin A were higher in incubations based on the concentrate-rich diet and the production of equol was higher in incubations based on the hay diet. Furthermore, in incubations with higher amounts of added clover extract, a decrease in equol production was observed. Further studies are needed to clarify the role of adaptation of rumen microflora on isoflavone degradation kinetics and to clarify the interrelationship between various dietary factors, rumen microbiota and isoflavones. The knowledge of isoflavone metabolism kinetics in dependence on studied factors will be useful for the optimization of feeding dose.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpn.13402DOI Listing

Publication Analysis

Top Keywords

red clover
12
rumen fluid
12
isoflavone metabolism
12
clover isoflavones
8
clover extract
8
concentrate-rich diet
8
concentrations daidzein
8
formononetin biochanin
8
equol production
8
production observed
8

Similar Publications

- Essential Oil: Chemical Composition, Phytotoxic Activity and Environmental Safety.

Plants (Basel)

January 2025

Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.

Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Effects of Red Clover Isoflavones on Growth Performance, Immune Function, and Cecal Microflora of Mice.

Animals (Basel)

January 2025

Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China.

Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control group, low-dose group (0.

View Article and Find Full Text PDF

White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!