Human T cell leukemia virus type 1 (HTLV-1) as the first human retrovirus is currently a serious endemic health challenge. Despite the use of assorted molecular or serological assays for HTLV-1 detection, there are several limitations due to the lack of a confirmatory test that may affect the accuracy of the results. Herein, a novel label-free biosensor for the detection of HTLV-1 Tax gene has been reported. An electrochemical facile ecofriendly synthesis method has been demonstrated based on a synthesis of nanocomposite of reduced graphene oxide, polypyrrole, and gold nanoparticles (rGO-PPy-(l-Cys)-AuNPs) deposited on the surface of screen-printed carbon electrode. Electrochemical techniques were used to characterize and study the electrochemical behavior of the rGO-PPy-(l-Cys)-AuNPs, which exhibited a stable reference peak at 0.21 V associated with hybridization forms by applying the differential pulse voltammetry. The designed DNA biosensor presented a wide linear range from 0.1 fM to 100 µM and a low detection limit of 20 atto-molar. The proposed biosensor presented in this study provides outstanding selectivity, sensitivity, repeatability, and reproducibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.1973 | DOI Listing |
Biomed Microdevices
January 2025
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Electronic Engineering, Huainan Normal University Huainan 232038 China
An erbium-doped fiber ring laser based on a single-mode fiber-no-core fiber-single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: β-lactoglobulin (β-Lg), a major allergen in dairy products, can trigger severe allergic reactions and even fatal outcomes in infants. In this work, we develop a new low background current redox recycling strategy by conjugating the electrochemical mediator to trimetallic hybrid nanoparticles (NPs)-dispersed graphene as the signal tag, which is coupled with DNAzyme amplifications to construct highly catalytic and ultrasensitive β-Lg aptasensor.
Results: Target β-Lg molecules bind aptamers in DNAzyme/aptamer duplexes to release active DNAzymes to initiate cyclic cleavage of hairpin substrates.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!