An increasing body of evidence authenticates the benefit of corneal stroma-derived stem cells (CSSCs) in tissue engineering and regeneration oriented research, and potentially in the development of clinically relevant cellular therapies. Postmortem corneal tissue obtained from otherwise discarded material after keratoplasties is oftentimes the source of the cells for ex vivo research. Relatively easy to isolate and cultivate as well as inexpensive to culture, CSSCs now represent a well-described cell type with attributes of mesenchymal stem cells (MSCs). These include differentiation- and immunosuppressive potential, as well as a favorable capacity to expand in vitro. Here, we in detail describe two straightforward methods to isolate and establish CSSC cultures ex vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0599-8_1 | DOI Listing |
J Biophotonics
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India.
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Dental Implantology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
Lignin is a naturally derived biomacromolecule with excellent biocompatibility and the potential for biomedical application. For the first time, this study isolated nanosized lignin microspheres (LMSs) directly from wheat straw with a polyol-based deep eutectic solvent. The size of these LMSs can be regulated by changing the isolation parameters, ranging from 90 nm to 330 nm.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: The debate continues on whether combining core decompression (CD) with regenerative therapy provides a more effective treatment for early femoral head necrosis than CD alone. This systematic review and meta-analysis endeavored to assess its efficacy.
Methods: We systematically searched PubMed, Web of Science, and Cochrane Library through July 2024 for RCTs and cohort studies evaluating the impact of core decompression (CD) with regenerative therapy versus CD alone in early-stage osteonecrosis (ARCO I, II or IIIa or Ficat I or II) of the femoral head (ONFH).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!