This study investigates the impact of an engineered magnetic nanoparticle (MNP) on a crop plant. For this purpose, a sonochemical synthetic approach was utilized in order to dope magnetic elements (Co and Nd) into technologically important iron oxide NPs. After being characterized by using TEM, SEM, and XRD instruments, the MNPs were hydroponically applied to barley plants with varying doses (from 125 to 1000 mg/L) both in germination (4 days) and early growing stages (3 weeks). Physiological responses, as well as expression of photosystem marker genes, were assessed. Compared to the untreated control, MNP treatment enhanced germination rate (~ 31%), tissue growth (8% in roots, 16% in shoots), biomass (~ 21%), and chlorophyll (a, b) (~ 20%), and carotenoids (~ 22%) pigments. In general, plants showed the highest growth enhancement at 125 or 250 mg/L treatment. However, higher doses diminished the growth indices. Compared to the control, the catalase activity was significantly reduced in the leaves (~ 33%, p < 0.005) but stimulated in the roots (~ 46%, p < 0.005). All tested photosystem marker genes (BCA, psbA, and psaA) were overexpressed in MNP-treated leaves than non-treated control. Moreover, the gene expressions were found to be proportionally increased with increasing MNP doses, indicating a positive correlation between MNPs and the photosynthetic machinery, which could contribute to the enhancement of plant growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-09693-1 | DOI Listing |
Adv Sci (Weinh)
March 2025
Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, China.
Innovation in synthesis methodologies is crucial for advancing the discovery of new materials. This work reports the electrosynthesis of a [Au(4-BuPhC≡C)(Dppe)]Cl nanocluster (Au NC) protected by alkynyl and phosphine ligands. From simple precursor, HAuCl and ligands, the whole synthesis is driven by a constant potential in single electrolytic cell.
View Article and Find Full Text PDFMagn Reson Med
March 2025
Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Purpose: To propose a two-step, nonlocal principal component analysis (PCA) method and demonstrate its utility for denoising complex diffusion MR images with a few diffusion directions.
Methods: A two-step denoising pipeline was implemented to ensure accurate patch selection even with high noise levels and was coupled with data preprocessing for g-factor normalization and phase stabilization before data denoising with a nonlocal PCA algorithm. At the heart of our proposed pipeline was the use of a data-driven optimal shrinkage algorithm to manipulate the singular values in a way that would optimally estimate the noise-free signal.
Brain Connect
March 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
The brain's complex functionality emerges from network interactions that go beyond dyadic connections, with higher-order interactions significantly contributing to this complexity. Homotopic functional connectivity (HoFC) is a key neurophysiological characteristic of the human brain, reflecting synchronized activity between corresponding regions in the brain's hemispheres. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, we evaluate dyadic and higher-order interactions of three functional connectivity (FC) parameterizations-bivariate correlation, partial correlation, and tangent space embedding-in their effectiveness at capturing HoFC through the inter-hemispheric analogy test.
View Article and Find Full Text PDFSmall Methods
March 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW).
View Article and Find Full Text PDFAdv Mater
March 2025
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Electromagnetic materials with adjustable dielectric and magnetic properties are constantly sought after in electronic and industrial fields. In this study, an innovative strategy that customizes anchored Co-based nanoparticles to optimize the electronic behaviors is proposed for the first time, enabling a controllable and high-efficiency evolution of the macroscopic electromagnetic response of Co-based (C/CoT) nanoplates across the X-ray, light in the solar band and gigahertz band. Specifically, in the gigahertz band, the C/Co and C/CoSe nanoplates with high-power loss capabilities can effectively attenuate and convert electromagnetic energy into heat energy, which not only prevents space electromagnetic radiation but also powers energy for various electromagnetic devices such as thermoelectric generators and microwave actuators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!