Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors.

J Mater Chem B

Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Published: July 2020

Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb00569jDOI Listing

Publication Analysis

Top Keywords

electrochemical sensors
16
sensors biosensors
16
advances zno
8
zno nanostructure-based
8
nanostructure-based electrochemical
8
zno nanostructures
8
electrochemical
4
sensors
4
biosensors
4
biosensors nanostructured
4

Similar Publications

Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.

View Article and Find Full Text PDF

Brain-Computer Interface and Electrochemical Sensor Based on Boron-Nitrogen Co-Doped Graphene-Diamond Microelectrode for EEG and Dopamine Detection.

ACS Sens

January 2025

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.

The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.

View Article and Find Full Text PDF

In order to achieve high quality production of vitamin E and plant sterols, it is necessary to conduct rapid and accurate detection of fungal toxins in their production raw material (vegetable oil deodorizer distillate, VODD). In this study, the flower-like biomimetic enzyme of silver-doped ZnO was synthesized through wet chemical method and in-situ reduction method. Based on above work, a flower-like biomimetic enzyme modified glass carbon electrode was fabricated, and its excellent detection capability against fungal toxins zearalenone was confirmed through electrochemical analysis.

View Article and Find Full Text PDF

Molecularly imprinted electrochemical sensor to sensitively detect tetramethylpyrazine in Baijiu.

Analyst

January 2025

Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Tetramethylpyrazine (TMP) is a compound known for its natural health benefits, but current detection methods for TMP are overly expensive and time-consuming. In this study, we developed functional materials with TMP molecular recognition properties using molecularly imprinted technology. As TMP does not produce electrochemical signals in the detection potential range, hexacyanoferrate was selected as a redox probe, combined with the highly conductive polymer PEDOT:PSS to enhance electrode conductivity.

View Article and Find Full Text PDF

Controlled synthesis of faceted nanoparticles on surfaces without explicit use of ligands has gained attention due to their promising applications in electrocatalysis and chemical sensing. Electrodeposition is a desirable method; however, precise control over their size, spatial distribution, and morphology requires extensive optimization. Here, we report the spatially resolved synthesis of shape-controlled Pt nanoparticles and fast screening of synthesis conditions in scanning electrochemical cell microscopy (SECCM) with pulse potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!