Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7280747PMC
http://dx.doi.org/10.1016/j.reth.2020.05.001DOI Listing

Publication Analysis

Top Keywords

robert nerem
4
nerem international
4
international expert
4
expert mechanobiology
4
mechanobiology cellular
4
cellular engineering
4
engineering tissue
4
tissue engineering
4
engineering regenerative
4
regenerative medicine
4

Similar Publications

Research shows that gene duplication followed by either repurposing or removal of duplicated genes is an important contributor to evolution of gene and protein interaction networks. We aim to identify which characteristics of a network can arise through this process, and which must have been produced in a different way. To model the network evolution, we postulate vertex duplication and edge deletion as evolutionary operations on graphs.

View Article and Find Full Text PDF

The blood stage of the infection of the malaria parasite exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators.

View Article and Find Full Text PDF

Experimental time series provide an informative window into the underlying dynamical system, and the timing of the extrema of a time series (or its derivative) contains information about its structure. However, the time series often contain significant measurement errors. We describe a method for characterizing a time series for any assumed level of measurement error [Formula: see text] by a sequence of intervals, each of which is guaranteed to contain an extremum for any function that [Formula: see text]-approximates the time series.

View Article and Find Full Text PDF

Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!