Effect of inositol 1, 4, 5-trisphosphate receptor dependent Ca2+ release in atrial fibrillation.

Chin Med J (Engl)

Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.

Published: July 2020

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401769PMC
http://dx.doi.org/10.1097/CM9.0000000000000898DOI Listing

Publication Analysis

Top Keywords

inositol 5-trisphosphate
4
5-trisphosphate receptor
4
receptor dependent
4
dependent ca2+
4
ca2+ release
4
release atrial
4
atrial fibrillation
4
inositol
1
receptor
1
dependent
1

Similar Publications

PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth.

Int J Mol Sci

November 2024

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.

Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood.

View Article and Find Full Text PDF

Astrocytes are active cells involved in brain function through the bidirectional communication with neurons, in which astrocyte calcium plays a crucial role. Synaptically evoked calcium increases can be localized to independent subcellular domains or expand to the entire cell, i.e.

View Article and Find Full Text PDF

Computational model of the spatiotemporal synergetic system dynamics of calcium, IP and dopamine in neuron cells.

Cogn Neurodyn

October 2024

Department of Mathematics, Bioinformatics and Computer Applications, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462003 India.

Article Synopsis
  • Neuron cell processes depend on the interaction of systems like calcium, inositol triphosphate (IP), and dopamine, but studying them individually gives limited insights.
  • A mathematical model was developed to analyze the combined dynamics of these three systems in neurons, incorporating their spatial and temporal behaviors.
  • This model highlights how different cellular mechanisms, such as receptor interactions, affect the dynamics of calcium, IP, and dopamine, and relates these interactions to neurological disorders such as Alzheimer's and Parkinson's disease.
View Article and Find Full Text PDF

The routing of blood flow throughout the brain vasculature is precisely controlled by mechanisms that serve to maintain a fine balance between local neuronal demands and vascular supply of nutrients. We recently identified two capillary endothelial cell (cEC)-based mechanisms that control cerebral blood flow in vivo: 1) electrical signaling, mediated by extracellular K-dependent activation of strong inward rectifying K (Kir2.1) channels, which are steeply activated by hyperpolarization and thus are capable of cell-to-cell propagation, and 2) calcium (Ca) signaling, which reflects release of Ca via the inositol 1,4,5-trisphosphate receptor (IPR)-a target of G-protein-coupled receptor signaling.

View Article and Find Full Text PDF

Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans.

Circulation

December 2024

Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.).

Article Synopsis
  • * Researchers identified 21 human ITPR1 GOF variants and created a mouse model with one of these variants (ITPR1-W1457G), which was found to be prone to stress-induced ventricular arrhythmias.
  • * Both mouse models and human data suggest that ITPR1 GOF variants increase Ca handling abnormalities and arrhythmia risk, with 7 rare ITPR1 variants in a human database showing similar GOF behavior linked to cardiac
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!