Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Foam potential and viscometer ramp tests (VRTs) were conducted for three municipal wastewater treatment plants to determine if these methods can relate to mechanisms of foaming to physical and biological constituents in sludge. At all plants, digester volatile solids (VS) concentration correlated (R > 0.41) with increases in plastic viscosity, a VRT parameter corresponding to foaming risk. Plastic viscosity also correlated with foam-causing bacteria Gordonia (R = 0.38). Foam potential test values increased with Microthrix parvicella (R> 0.28). For one plant, suspected foam-causing bacteria Mycobacterium negatively correlated with parameters representing foam risk. Microscopic filament counting correlated (R = 0.97) with quantitative polymerase chain reaction (qPCR) for Gordonia, suggesting that the more accessible counting method can reliably quantify foam-causing bacteria. Foam potential tests and VRTs resulted in plant-specific correlations with foam-related constituents. Therefore, these tests may provide useful evidence when investigating causes of digester foam events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2020.180 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!