Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein domain interactions with short linear peptides, such as those of the Src homology 2 (SH2) domain with phosphotyrosine-containing peptide motifs (pTyr), are ubiquitous and important to many biochemical processes of the cell. The desire to map and quantify these interactions has resulted in the development of high-throughput (HTP) quantitative measurement techniques, such as microarray or fluorescence polarization assays. For example, in the last 15 years, experiments have progressed from measuring single interactions to covering 500,000 of the 5.5 million possible SH2-pTyr interactions in the human proteome. However, high variability in affinity measurements and disagreements about positive interactions between published data sets led us here to reevaluate the analysis methods and raw data of published SH2-pTyr HTP experiments. We identified several opportunities for improving the identification of positive and negative interactions and the accuracy of affinity measurements. We implemented model-fitting techniques that are more statistically appropriate for the nonlinear SH2-pTyr interaction data. We also developed a method to account for protein concentration errors due to impurities and degradation or protein inactivity and aggregation. Our revised analysis increases the reported affinity accuracy, reduces the false-negative rate, and increases the amount of useful data by adding reliable true-negative results. We demonstrate improvement in classification of binding nonbinding when using machine-learning techniques, suggesting improved coherence in the reanalyzed data sets. We present revised SH2-pTyr affinity results and propose a new analysis pipeline for future HTP measurements of domain-peptide interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415975 | PMC |
http://dx.doi.org/10.1074/jbc.RA120.012503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!