A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New analysis pipeline for high-throughput domain-peptide affinity experiments improves SH2 interaction data. | LitMetric

Protein domain interactions with short linear peptides, such as those of the Src homology 2 (SH2) domain with phosphotyrosine-containing peptide motifs (pTyr), are ubiquitous and important to many biochemical processes of the cell. The desire to map and quantify these interactions has resulted in the development of high-throughput (HTP) quantitative measurement techniques, such as microarray or fluorescence polarization assays. For example, in the last 15 years, experiments have progressed from measuring single interactions to covering 500,000 of the 5.5 million possible SH2-pTyr interactions in the human proteome. However, high variability in affinity measurements and disagreements about positive interactions between published data sets led us here to reevaluate the analysis methods and raw data of published SH2-pTyr HTP experiments. We identified several opportunities for improving the identification of positive and negative interactions and the accuracy of affinity measurements. We implemented model-fitting techniques that are more statistically appropriate for the nonlinear SH2-pTyr interaction data. We also developed a method to account for protein concentration errors due to impurities and degradation or protein inactivity and aggregation. Our revised analysis increases the reported affinity accuracy, reduces the false-negative rate, and increases the amount of useful data by adding reliable true-negative results. We demonstrate improvement in classification of binding nonbinding when using machine-learning techniques, suggesting improved coherence in the reanalyzed data sets. We present revised SH2-pTyr affinity results and propose a new analysis pipeline for future HTP measurements of domain-peptide interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415975PMC
http://dx.doi.org/10.1074/jbc.RA120.012503DOI Listing

Publication Analysis

Top Keywords

analysis pipeline
8
interaction data
8
affinity measurements
8
data sets
8
interactions
7
data
6
affinity
5
analysis
4
pipeline high-throughput
4
high-throughput domain-peptide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!