Estimates of lower thermal limits are widely used to infer sensitivity to climate variability, local adaptation and adaptive acclimation responses in ectotherms. These inferences build on the ecological relevance of the tolerance estimates and assume that estimates can be extrapolated to relevant conditions. Methodological effects for upper thermal limits have been extensively investigated, with different ramping rates and acclimation regimes giving rise to varying, and even disparate, conclusions. However, methodological effects have received much less attention for lower thermal limits. In this study, we explicitly test whether methodology could affect estimates of lower thermal limits in interaction with acclimation temperature and thermal variability, by acclimating adult Drosophila melanogaster to different constant and fluctuating temperature regimes and generating reaction norms at different ramping rates. We find that ramping rates have no significant effect on the lower thermal limits. Constant temperature acclimation resulted in non-linear reaction norms, while the introduction of thermal variability during adult life result in linear reaction norms. Thus, applying ecologically relevant conditions (here thermal variability) potentially impacts the results and conclusions of insect low temperature tolerance and acclimation capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2020.104075 | DOI Listing |
ACS Nano
January 2025
Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Heating techniques have underpinned the progress of the material and manufacturing industries. However, the explosive development of nanomaterials and micro/nanodevices has raised more requirements for the heating technique, including but not limited to high efficiency, low cost, high controllability, good usability, scalability, universality, and eco-friendliness. Carbothermal shock (CTS), a heating technique derived from traditional electrical heating, meets these requirements and is advancing at a high rate.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Lanthanide-doped fluoride nanocrystals have emerged as promising tools in biomedicine, yet their applications are still limited by their low luminescence efficiency. Herein, we developed highly efficient lithium-based core-shell-shell (CSS) nanoprobes (NPs) featuring a rhombic active domain and a spherical inert protective shell. By introducing Yb as an energy transfer bridge and optimizing the CSS design, a remarkable 1643-fold enhancement in visible emission and a 33-fold increase in NIR emission are achieved compared to original nanoparticles.
View Article and Find Full Text PDFChemphyschem
January 2025
Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY.
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!