AI Article Synopsis

  • Mitochondria are essential for producing ATP and other metabolites needed for cell growth in both animals and plants.
  • They are structured with two membranes and rely on communication with other organelles and the cytosol for effective functioning.
  • The review discusses the differences between plant and animal mitochondrial ion channels and transporters, and explores potential identities of unidentified transport systems based on existing data and predictions.

Article Abstract

Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2020.05.007DOI Listing

Publication Analysis

Top Keywords

channels transporters
12
inorganic ions
8
ion channels
8
transporters inorganic
4
ions plant
4
mitochondria
4
plant mitochondria
4
mitochondria prediction
4
prediction facts
4
facts mitochondria
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Mitochondrial Porin Is Required for Versatile Biocontrol Trait-Involved Biological Processes in a Filamentous Insect Pathogenic Fungus.

J Agric Food Chem

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.

The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

The Internet of Vehicles (IoV), a key component of smart transportation systems, leverages 5G communication for low-latency data transmission, facilitating real-time interactions between vehicles, roadside units (RSUs), and sensor networks. However, the open nature of 5G communication channels exposes IoV systems to significant security threats, such as eavesdropping, replay attacks, and message tampering. To address these challenges, this paper proposes the Efficient Cluster-based Mutual Authentication and Key Update Protocol (ECAUP) designed to secure IoV systems within 5G-enabled sensor networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!