Objective: Chalcones (1, 3-diaryl-2-propen-1-ones) and their derivatives are widely explored from the past decade for its antimalarial activity. To elucidate their mechanism of action on the malaria parasite, the ultrastructural changes with the action of these derivatives in different organelles of the parasite were studied in vitro. Infected RBCs [CQ sensitive (MRC-2) and CQ resistant (RKL-9) Plasmodium strain] were treated with three chalcone derivatives 1, 2 and 3 and standard drugs, i.e., CQ and artemisinin at twice their respective IC values for 24 h and then harvested, washed, fixed, embedded and stained to visualize ultra-structure changes before and after intervention of treatment under in vitro condition through transmission electron microscope.
Results: The ultrastructural changes demonstrate the significant disturbance of all parasite membranes, including those of the nucleus, mitochondria and food vacuole, in association with a marked reduction of ribosomes in the trophozoites and cessation of developing schizonts which suggest multiple mechanisms of action by which chalcone derivatives act on the malaria parasite. The present study opens up perspectives for further exploration of these derivatives in vivo malaria model to discover more about its effect and mechanism of action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296763 | PMC |
http://dx.doi.org/10.1186/s13104-020-05132-z | DOI Listing |
ChemMedChem
January 2025
Federal University of Parana: Universidade Federal do Parana, Graduate Program in Pharmaceutical Sciences, BRAZIL.
The breast cancer resistance protein (BCRP/ABCG2) plays a major role in the multidrug resistance of cancers toward chemotherapeutic treatments. It was demonstrated that cholesterol regulates the ABCG2 activity, suggesting that lower levels of membrane cholesterol decrease the ABCG2 activity in mammalian cells. However, the precise mechanism remains unclear.
View Article and Find Full Text PDFChem Asian J
January 2025
National Institute of Technology Warangal, Department of Chemistry, Hanamkonda, 506004, Warangal, INDIA.
We report CBr4 catalyzed Michael addition of indole to α,β-unsaturated ketones for the synthesis of β-indolylketones through halogen bonding catalysis. This reaction is compatible with a diverse range of chalcones, including drug-derived chalcones containing sensitive functional groups such as amides, yielding the addition products in good yields. Additionally, 3-indolyl furanoid motifs have been synthesized through the Michael addition followed by Paal-Knorr cyclization by utilizing various unsymmetrical 1,4-enediones in a one-pot process with good yields.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:
Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.
View Article and Find Full Text PDFCurr Med Chem
January 2025
School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
Objectives: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, but no drugs can cure this disease. Chalcones possess good antioxidant activity, anti-neuroinflammatory activity, neuroprotective effects, inhibitory effects on Aβ aggregation, and Aβ disaggregation ability. Therefore, chalcones are ideal lead compounds, and the discovery of novel anti-AD agent-based chalcones is necessary.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universite Mohammed Premier Oujda Faculte Pluridisciplinaire de Nador, Department of Chemistry, 60700 Nador, Morocco, Nador, 60700, Nador, MOROCCO.
In recent years, Imidazothiazole-Chalcone conjugates have emerged as notable pharmacophores with potential applications in discovering biologically active compounds. This study focuses on synthesizing novel imidazo[2,1-b]thiazole chalcone derivatives through a facile and conventional process adhering to several principles of green chemistry, facilitating scalable production. The synthesized compounds underwent comprehensive spectroscopic analysis, including 1H NMR, 13C NMR, LC-MS, and FT-IR techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!