Clinically available cartilage, such as large-volume tissue-engineered cartilage, is urgently required for various clinical applications. Tissue engineering chamber (TEC) models are a promising organ-level strategy for efficient enlargement of cells or tissues within the chamber. The conventional TEC technology is not suitable for cartilage culture, because it lacks the necessary chondrogenic growth factor, which is present in platelet-rich plasma (PRP). In this study, we added autogenous auricular cartilage fragments mixed with PRP in a TEC to obtain a large amount of engineered cartilage. To prove the efficacy of this method, 48 New Zealand white rabbits were randomly divided into 4 groups: PRP, vascularized (Ves), PRP, PRP+Ves, and control. Auricular cartilage was harvested from the rabbits, cut into fragments (2 mm), and then injected into TECs. Cartilage constructs were harvested at week 8, and construct volumes were measured. Histological morphology, immunochemical staining, and mechanical strength were evaluated. At week 8, PRP+Ves constructs developed a white, cartilage-like appearance. The volume of cartilage increased by 600% the original volume from 0.30 to 1.8 ± 0.1789 mL. Histological staining showed proliferation of edge chondrocytes in the embedded cartilage in the PRP and PRP+Ves groups. Furthermore, the cartilage constructs in the PRP+Ves group show mechanical characteristics similar to those of normal cartilage. Auricular cartilage fragments mixed with PRP and vascularization of the TEC showed a significantly increased cartilage tissue volume after 8 weeks of incubation in rabbits. Impact Statement Repair of defects of ear cartilage tissue has always been a huge challenge to plastic surgeons. In this article, a new method is presented to produce within 8 weeks auricular cartilage in a tissue engineering chamber without cell culture. Having such a method is a valuable step toward creating a large volume of functional cartilage tissue, which may lead to successful construction of normal auricular structure with minimal donor-site morbidity.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2020.0049DOI Listing

Publication Analysis

Top Keywords

cartilage
16
auricular cartilage
16
cartilage tissue
16
platelet-rich plasma
8
cell culture
8
tissue engineering
8
engineering chamber
8
cartilage fragments
8
fragments mixed
8
mixed prp
8

Similar Publications

Osteoarthritis (OA) is a chronic joint condition affecting millions worldwide, characterized by the gradual degeneration of joint cartilage, leading to pain, stiffness, and functional impairment. Although the pathogenesis of OA is not fully understood, the roles of inflammation, metabolic dysregulation, and biomechanical stress are increasingly recognized. Current treatments, including pharmacotherapy, physical therapy, and surgical interventions, aim to alleviate symptoms and improve quality of life, yet they face limitations and challenges.

View Article and Find Full Text PDF

Aberrant Insertion of the Anterior Cruciate Ligament on the Lateral Meniscus: A Case Report.

JBJS Case Connect

January 2025

Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.

Case: A 16-year-old woman presented with acute on chronic knee pain and instability following a twisting injury. The tibial insertion of the anterior cruciate ligament (ACL) was nonvisualized on magnetic resonance imaging. A cord-like ACL, originating from the lateral intercondylar notch and inserting smoothly into the anterior horn of the intact lateral meniscus, was found on arthroscopy.

View Article and Find Full Text PDF

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!