Diagnostic Classification for Human Autism and Obsessive-Compulsive Disorder Based on Machine Learning From a Primate Genetic Model.

Am J Psychiatry

Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai (Zhan, Wang); University of Chinese Academy of Sciences, Beijing (Zhan, Wang); School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing (Wei); Institute of Automation, Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing (Wei, Liang, He); Department of Child Health Care, Children's Hospital of Fudan University, Shanghai (Xu); Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, U.K. (Robbins); Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai (Robbins); Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai (Wang); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China (Wang).

Published: January 2021

Objective: Psychiatric disorders commonly comprise comorbid symptoms, such as autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and attention deficit hyperactivity disorder (ADHD), raising controversies over accurate diagnosis and overlap of their neural underpinnings. The authors used noninvasive neuroimaging in humans and nonhuman primates to identify neural markers associated with DSM-5 diagnoses and quantitative measures of symptom severity.

Methods: Resting-state functional connectivity data obtained from both wild-type and methyl-CpG binding protein 2 () transgenic monkeys were used to construct monkey-derived classifiers for diagnostic classification in four human data sets (ASD: Autism Brain Imaging Data Exchange [ABIDE-I], N=1,112; ABIDE-II, N=1,114; ADHD-200 sample: N=776; OCD local institutional database: N=186). Stepwise linear regression models were applied to examine associations between functional connections of monkey-derived classifiers and dimensional symptom severity of psychiatric disorders.

Results: Nine core regions prominently distributed in frontal and temporal cortices were identified in monkeys and used as seeds to construct the monkey-derived classifier that informed diagnostic classification in human autism. This same set of core regions was useful for diagnostic classification in the OCD cohort but not the ADHD cohort. Models based on functional connections of the right ventrolateral prefrontal cortex with the left thalamus and right prefrontal polar cortex predicted communication scores of ASD patients and compulsivity scores of OCD patients, respectively.

Conclusions: The identified core regions may serve as a basis for building markers for ASD and OCD diagnoses, as well as measures of symptom severity. These findings may inform future development of machine-learning models for psychiatric disorders and may improve the accuracy and speed of clinical assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2020.19101091DOI Listing

Publication Analysis

Top Keywords

diagnostic classification
16
classification human
12
core regions
12
human autism
8
obsessive-compulsive disorder
8
psychiatric disorders
8
measures symptom
8
construct monkey-derived
8
monkey-derived classifiers
8
functional connections
8

Similar Publications

Trends, characteristics, and outcomes of pregnancy in women with attention-deficit hyperactivity disorder: A nationwide analysis.

Eur J Obstet Gynecol Reprod Biol

January 2025

Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Los Angeles General Medical Center, Los Angeles, CA, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA. Electronic address:

Objective: To assess clinical and obstetric characteristics associated with pregnant patients with a diagnosis of attention-deficit hyperactivity disorder (ADHD).

Methods: This serial cross-sectional study queried the Agency of Healthcare Research and Quality's Healthcare Cost and Utilization Project National Inpatient Sample. The study population was 16,759,786 hospital deliveries from 2016 to 2020.

View Article and Find Full Text PDF

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!