Mixing negatively charged polyelectrolyte (PEL) with positively charged gold nanoparticles (Au NPs) in aqueous solution results in electrostatics complexes of different shapes and compactness. Here, when complexing with a semirigid PEL hyaluronic acid (HA), we obtain crystals made of nanoparticles in a new region of the phase diagram, as evidenced by small-angle X-ray scattering (SAXS). The Au NPs were initially well dispersed in solution; their size distribution is well controlled but does not need to be extremely narrow. The bacterial hyaluronic acid, polydispersed, is commercially available. Such rather simple materials and mixing preparation produce a highly ordered crystalline phase of electrostatic complexes. The details of the interactions between spherical nanoparticles and linear polymer chains remain to be investigated. In practice, it opens a completely new and unexpected method of complexation. It has high potential, in particular because one can take advantage of the versatility of Au NPs associated with the specificity of biopolymers, varied due to natural biodiversity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c01064DOI Listing

Publication Analysis

Top Keywords

charged gold
8
hyaluronic acid
8
self-induced crystallization
4
crystallization charged
4
gold nanoparticle-semiflexible
4
nanoparticle-semiflexible biopolyelectrolyte
4
biopolyelectrolyte complexes
4
complexes mixing
4
mixing negatively
4
negatively charged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!