A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling Atomically Irreversible Cation Migration in Sodium Layered Oxide Cathodes. | LitMetric

Unraveling Atomically Irreversible Cation Migration in Sodium Layered Oxide Cathodes.

J Phys Chem Lett

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, People's Republic of China.

Published: July 2020

Transition metal (TM)-based layered oxides NaTMO (TM = Fe, Ni, Co, Mn, etc.) have been intensively pursued as high-capacity cathode materials for Na-ion batteries. Nevertheless, they still suffer from fast capacity loss and voltage decay, as a result of the layered structure instability upon extended electrochemical cycling. The mechanism underlying such instability remains poorly understood. Here we unravel the TM migrations and structural evolution of a quaternary NaNiCoMnFeO compound during electrochemical cycling using atomic-resolution electron microscopy and associated spectroscopies. We discover successive migrations of TM ions to Na layers that account for structure and performance degradations. The Fe ions migrate into the interstices of both tetrahedra and octahedra of the layers; on the contrary, the Ni ions migrate predominantly in the octahedral ones, and the Mn and Co ions mostly remain in the TM layers. Direct atomic-level observations of the TM migration process upon cycling offer deep insight into designing high-capacity and long-life span cathode materials for sodium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01285DOI Listing

Publication Analysis

Top Keywords

cathode materials
8
electrochemical cycling
8
ions migrate
8
unraveling atomically
4
atomically irreversible
4
irreversible cation
4
cation migration
4
migration sodium
4
sodium layered
4
layered oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!