Download full-text PDF

Source

Publication Analysis

Top Keywords

[inhibition lactate
4
lactate dehydrogenase
4
dehydrogenase rat
4
rat erythrocytes
4
erythrocytes liver
4
liver -sh
4
-sh group
4
group reagents]
4
[inhibition
1
dehydrogenase
1

Similar Publications

sp. nov., isolated from tree bark ( Chev.) and its antioxidant activity.

Int J Syst Evol Microbiol

January 2025

Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with no targeted treatments currently available. TNBC cells participate in metabolic symbiosis, a process that optimizes tumor growth by balancing metabolic processes between glycolysis and oxidative phosphorylation through increased activity by the enzyme lactate dehydrogenase B (LDHB). Metabolic symbiosis allows oxidative cancer cells to function at a similar rate as glycolytic cancer cells, increasing overall metabolic activity and proliferation.

View Article and Find Full Text PDF

Sulforaphane acutely activates multiple starvation response pathways.

Front Nutr

January 2025

Aging and Metabolism Research Program, Oklahoma City, OK, United States.

Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.

View Article and Find Full Text PDF

Background: The interaction between Streptococcus mutans (S. mutans) and Veillonella species (Veillonella spp.) is unclear.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!