Motivation: CircRNAs are an abundant class of non-coding RNAs with widespread, cell-/tissue-specific patterns. Previous work suggested that epigenetic features might be related to circRNA expression. However, the contribution of epigenetic changes to circRNA expression has not been investigated systematically. Here, we built a machine learning framework named CIRCScan, to predict circRNA expression in various cell lines based on the sequence and epigenetic features.
Results: The predicted accuracy of the expression status models was high with area under the curve of receiver operating characteristic (ROC) values of 0.89-0.92 and the false-positive rates of 0.17-0.25. Predicted expressed circRNAs were further validated by RNA-seq data. The performance of expression-level prediction models was also good with normalized root-mean-square errors of 0.28-0.30 and Pearson's correlation coefficient r over 0.4 in all cell lines, along with Spearman's correlation coefficient ρ of 0.33-0.46. Noteworthy, H3K79me2 was highly ranked in modeling both circRNA expression status and levels across different cells. Further analysis in additional nine cell lines demonstrated a significant enrichment of H3K79me2 in circRNA flanking intron regions, supporting the potential involvement of H3K79me2 in circRNA expression regulation.
Availability And Implementation: The CIRCScan assembler is freely available online for academic use at https://github.com/johnlcd/CIRCScan.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btaa567 | DOI Listing |
Asia Pac J Clin Oncol
January 2025
Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200030, China.
Prostate cancer (PCa) is one of the most common malignancies for male individuals globally. Androgen deprivation therapy (ADT) initially demonstrated significant efficacy in treating PCa; however, most cases of PCa eventually progress to castration-resistant prostate cancer (CRPC), which becomes increasingly challenging to manage. Notably, the loss or disruption of primary cilia in PCa cells may play a critical role in the progression of the disease, and there are no reports on the role of circular RNAs in ciliogenesis.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedics, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China.
Background: Osteoarthritis (OA) is a common type of degenerative arthropathy. Previous studies have demonstrated that circular RNAs (circRNAs) are involved in the progression of OA. This study aimed to investigate the role and associated mechanism of circ_0075048 in OA.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330000, Jiangxi Province, P.R. China.
Circular RNAs (circRNAs) are widely involved in diverse biological processes of cancers. Nonetheless, the potential function of hsa_circ_0008305 in hepatocellular carcinoma (HCC) remains largely unknown. This study aims to elucidate the role and underlying mechanism of hsa_circ_0008305 in HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!