Emerging single-atom catalysts (SACs) hold great promise for CO electroreduction (CO ER) but the design of highly active and cost-efficient SACs is still challenging. Herein, a gas diffusion strategy, along with one-step thermal activation, for fabricating N-doped porous carbon polyhedrons with trace isolated Fe atoms (Fe NC) is developed. The optimized Fe NC/S -1000 with atomic Fe-N sites supported by N-doped graphitic carbons exhibits superior CO ER performance with the CO Faradaic efficiency up to 96% at -0.5 V, turnover frequency of 2225 h , and outstanding stability, outperforming almost all previously reported SACs based on N-doped carbon supported nonprecious metals. The observed excellent CO ER performance is attributed to the greatly enhanced accessibility and intrinsic activity of active centers due to the increased electrochemical surface area through size modulation and the redistribution of doped N species by thermal activation. Experimental observations and theoretical calculations reveal that the Fe-N sites possess balanced adsorption energies of *COOH and *CO intermediates, facilitating CO formation. A universal gas diffusion strategy is used to exclusively yield a series of dimension-controlled carbon-supported SACs with single Fe atoms while a rechargeable Zn-CO battery with Fe NC/S -1000 as cathode is developed to deliver a maximal power density of 0.6 mW cm .

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202002430DOI Listing

Publication Analysis

Top Keywords

gas diffusion
12
diffusion strategy
12
thermal activation
8
nc/s -1000
8
fe-n sites
8
strategy inserting
4
inserting atomic
4
atomic iron
4
iron sites
4
sites graphitized
4

Similar Publications

Behavior, mechanisms, and applications of low-concentration CO in energy media.

Chem Soc Rev

January 2025

Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.

This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.

View Article and Find Full Text PDF

Evaluation of hazardous substances emitted during mask use.

Environ Int

January 2025

Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea. Electronic address:

This study evaluated the inhalation of mask-derived materials by simulating real breathing conditions and examined how the amount of inhaled materials varies with breathing flow rate and duration. Three types of non-certified reusable masks and two types of certified disposable masks were selected. For each mask, five different hazardous materials were captured and analyzed in three replicates with two breathing flow rates of 30 L/min and 85 L/min and two breathing time combinations of 15 min and 60 min.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

Comparative Analysis of Chemical Composition and Antibacterial Activity of Essential Oils from Five Varieties of Extracted via Supercritical Fluid Extraction.

Molecules

January 2025

Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.

This study aimed to determine the chemical composition of five essential oils (LEOs) using the gas chromatography-mass spectroscopy technique and to assess their antibacterial activity against four marine species, including , , , and . Sensitivity tests were performed using the disk diffusion and serial dilution methods. The results showed that all five LEOs exhibited antibacterial activity against the four tested marine species.

View Article and Find Full Text PDF

Background: Papaya leaves (PLs) are known for their therapeutic benefits and traditional use in treating inflammation, infections, and various health conditions. Rich in bioactive compounds, PLs are studied for their potential applications in functional foods. This study analyzed their nutritional, phytochemical, structural, thermal, and antimicrobial properties to evaluate their role as a health-promoting ingredient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!