Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the changes of runoff, sediment transport, and hydrodynamic parameters of slopes under the influence of landscape patch coverage and connectivity is of great significance for revealing the hydrodynamic mechanism and hydrological connectivity of slope soil erosion process. In this study, the changes of runoff, sediment transport and hydrodynamic parameters of downhill surface in different coverage levels (0%, 20%, 40%, 60%, 90%) and different connectivity modes (vertical path, horizonal path, S-shaped path, random patches) of shrublands were analyzed by field artificial simulated rainfall test. The results showed that, with the increases of shrub cove-rage, runoff yield and sediment yield decreased exponentially. When the coverage increased to more than 60%, the capacity of shrubs to reduce runoff and sediment became stable. With the increases of shrub coverage, flow velocity, flow depth, Reynolds number, Froude number, stream power, and flow shear resistance significantly decreased, while Manning's roughness coefficient and Darcy-Weisbach resistance coefficient increased significantly. When shrub coverage increased to more than 60%, there was no significant difference in the eigenvalues of hydraulic parameters. The runoff rate under the four connectivity modes followed the order of vertical path > S-shaped path > horizonal path > random patches. The sediment rate was the largest in the vertical path, followed by the S-shaped path, and the horizonal path was not significantly different from the random patches. The path with poor connectivity (horizonal path, random patches) exhibited stronger resistance of hydraulic transmission and poor hydraulic sedimentation capacity than the well-connected path (vertical path, S-shaped path). Our results could provide important theoretical basis for soil erosion control on the Loess Plateau and high-quality development of the Yellow River basin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202003.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!