A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Effects of plant roots on soil preferential flow in typical forest and grassland in the dry-hot valley of Jinsha River, China]. | LitMetric

To clarify the morphological characteristics of soil preferential flow and the effect of plant roots on its formation, plants from the typical vegetation types of an artificial woodland (Leucaena acacia) and a dry watershed grassland (Heteropogon contortus) of Yuanmou County, Jinsha River were selected as the experimental objects. Based on the staining and tracing method combined with Photoshop CS5 and the Image-Pro Plus 6.0 image processing technology, we analyzed the morphological and distribution characteristics of soil preferential flow under the two planting types and examined the effects of plant roots. We found significant difference in soil preferential flow dyeing area between the woodland and grassland species, and the overall variation trend of the forestland dyeing area ratio decreased with increasing soil depth. The dyeing area of the grassland decreased monotonously with the increases of soil depth. The occurrence degree of soil preferential flow in forest was higher than that of grassland. Root systemaffected the formation of soil preferential flow. At the root diameter ranges of 0≤d≤5 mm and d>10 mm, root length density of the woodland showed a monotonous decreasing trend with increasing soil depth, while in the root diameter range of 5 mm5 mm. The overall change trend of soil preferential flow dyeing area of two vegetation types in the study area decreased with increasing soil depth. Plant root system was closely related to the formation of soil preferential flow. Fine roots could promote while coarse roots may retard the formation of preferential flows.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202003.013DOI Listing

Publication Analysis

Top Keywords

soil preferential
24
preferential flow
24
plant roots
12
dyeing area
12
soil depth
12
soil
9
jinsha river
8
characteristics soil
8
increasing soil
8
root diameter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!