Dendritic cells (DC) are key phagocytic cells that play crucial roles in both the innate and adaptive immune responses against the human immunodeficiency virus type 1 (HIV-1). By processing and presenting pathogen-derived antigens, dendritic cells initiate a directed response against infected cells. They activate the adaptive immune system upon recognition of pathogen-associated molecular patterns (PAMPs) on infected cells. During the course of HIV-1 infection, a successful adaptive (cytotoxic CD8 T-cell) response is necessary for preventing the progression and spread of infection in a variety of cells. Dendritic cells have thus been recognized as a valuable tool in the development of immunotherapeutic approaches and vaccines effective against HIV-1. The advancements in dendritic cell vaccines in cancers have paved the way for applications of this form of immunotherapy to HIV-1 infection. Clinical trials with patients infected with HIV-1 who are well-suppressed by antiretroviral therapy (ART) were recently performed to assess the efficacy of DC vaccines, with the goal of mounting an HIV-1 antigen-specific T-cell response, ideally to clear infection and eliminate the need for long-term ART. This review summarizes and compares methods and efficacies of a number of DC vaccine trials utilizing autologous dendritic cells loaded with HIV-1 antigens. The potential for advancement and novel strategies of improving efficacy of this type of immunotherapy is also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267878 | PMC |
http://dx.doi.org/10.1155/2020/9470102 | DOI Listing |
Metab Brain Dis
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.
Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.
Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.
Virulence
December 2025
Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea.
(APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Stomatology, The People's Hospital of Deyang City, Deyang, Sichuan, China.
Background: Periodontal disease is a widespread inflammatory condition that compromises the supporting structures of the teeth, potentially resulting in tooth loss if left untreated. Despite advancements in therapeutic interventions and an enhanced understanding of its pathophysiology, emerging techniques such as single-cell RNA sequencing (scRNA-seq) and Mendelian randomization (MR) present new opportunities for precision medicine in the management of periodontal disease.
Methods: Data derived from the GSE152042 dataset underwent rigorous quality control, normalization, and dimensionality reduction using Seurat and the MonacoImmuneData framework.
Angew Chem Int Ed Engl
January 2025
Shandong University, School of Chemistry and Chemical Engineering, Shanda South road 27#, 250100, Jinan, CHINA.
The poor reversibility of the zinc anode caused by interfacial side reactions and dendritic growth poses significant constraints on the practical application of aqueous zinc-ion batteries. Herein, a co-solute, acesulfame potassium, with strongly polar, zincophilic guest anions is introduced into a conventional low-concentration aqueous electrolyte. This regulation enhances the electrolyte's ionic conductivity and accelerates the desolvation process of zinc ions at the electrode/electrolyte interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!