The identification of sea turtle behaviours is a prerequisite to predicting the activities and time-budget of these animals in their natural habitat over the long term. However, this is hampered by a lack of reliable methods that enable the detection and monitoring of certain key behaviours such as feeding. This study proposes a combined approach that automatically identifies the different behaviours of free-ranging sea turtles through the use of animal-borne multi-sensor recorders (accelerometer, gyroscope and time-depth recorder), validated by animal-borne video-recorder data. We show here that the combination of supervised learning algorithms and multi-signal analysis tools can provide accurate inferences of the behaviours expressed, including feeding and scratching behaviours that are of crucial ecological interest for sea turtles. Our procedure uses multi-sensor miniaturized loggers that can be deployed on free-ranging animals with minimal disturbance. It provides an easily adaptable and replicable approach for the long-term automatic identification of the different activities and determination of time-budgets in sea turtles. This approach should also be applicable to a broad range of other species and could significantly contribute to the conservation of endangered species by providing detailed knowledge of key animal activities such as feeding, travelling and resting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277266 | PMC |
http://dx.doi.org/10.1098/rsos.200139 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China. Electronic address:
As one of the neonicotinoid insecticides, thiacloprid (THI) is extensively used in agriculture and frequently detected in various aquatic environments, posing a potential threat to aquatic organisms. However, the effects of THI exposure on aquatic turtles remain unknown. In this study, we focused on investigating whether THI has a toxic effect on the gut-liver axis in aquatic turtles.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Instituto de Investigaciones Sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58330, Michoacán, Mexico.
Proc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFJ Exp Biol
January 2025
Mount Allison University, Sackville, New Brunswick, Canada.
The embryonic environment is critical for the development of many ectothermic vertebrates, which makes them highly vulnerable to environmental change. Changes in temperature and moisture, in particular, are known to influence embryo survival and offspring phenotypes. While most papers concerning phenotypic development of terrestrial ectotherms focus on the role of temperature on eggs and embryos, the comparatively small number of studies on the effects of substrate moisture are well suited for quantitative analysis aimed at guiding future research.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Veterinary Anatomy, Tokyo University of Agriculture and Technology, Tokyo, Japan.
The red-eared sliders (Emydidae: Trachemys scripta) is characterised by a high adaptability to a variety of environment and threatens the habitat of Japanese native species. The ability to digest a variety of diets may attribute to the high adaptive capacity of this species to various environments, however, the digestive morphology remains scarcely described in red-eared sliders. In this study, we investigated the macro- and microscopic anatomy of the esophagus, stomach, small intestine, and large intestine in red-eared sliders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!