Skin-associated microorganisms have been shown to play a role in immune function and disease of humans, but are understudied in marine mammals, a diverse animal group that serve as sentinels of ocean health. We examined the microbiota associated with 75 epidermal samples opportunistically collected from nine species within four marine mammal families, including: Balaenopteridae (sei and fin whales), Phocidae (harbour seal), Physeteridae (sperm whales) and Delphinidae (bottlenose dolphins, pantropical spotted dolphins, rough-toothed dolphins, short-finned pilot whales and melon-headed whales). The skin was sampled from free-ranging animals in Hawai'i (Pacific Ocean) and off the east coast of the United States (Atlantic Ocean), and the composition of the bacterial community was examined using the sequencing of partial small subunit (SSU) ribosomal RNA genes. Skin microbiotas were significantly different among host species and taxonomic families, and microbial community distance was positively correlated with mitochondrial-based host genetic divergence. The oceanic location could play a role in skin microbiota variation, but skin from species sampled in both locations is necessary to determine this influence. These data suggest that a phylosymbiotic relationship may exist between microbiota and their marine mammal hosts, potentially providing specific health and immune-related functions that contribute to the success of these animals in diverse ocean ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277249 | PMC |
http://dx.doi.org/10.1098/rsos.192046 | DOI Listing |
Neurochem Res
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
The specific pathogeneses of schizophrenia (SCZ) remain an enigma despite extensive research that has implicated both genetic and environmental factors. Recent revelations that dysregulated immune system caused by glial cell overactivation result in neuroinflammation, a key player in neurodegenerative as well as neuropsychiatric disorders including SCZ are providing novel clues on potential therapeutic interventions. Here, we review the roles of glial cells (Dr.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
We present the first documented case of highly pathogenic avian influenza virus (HPAIV) subtype H5N5 in an Atlantic walrus (). The animal was found dead in Svalbard, Norway, in 2023. Sequence analysis revealed the highest genetic similarity with virus isolates from different avian hosts.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Biology, University of Aarhus, Aarhus, 8000, Denmark.
Gransier and Kastelein [J. Acoust. Soc.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
UMR CNRS-UniCaen-MNHN-SU-UA-IRD BOREA, Biologie des Organismes et des Écosystèmes Aquatiques, Université de Caen-Normandie, CS 14032, 14000 Caen, France - France Énergies Marines, 53 rue de Prony, 76600 Le Havre, France.
In the anthropocene era, one of the greatest challenges facing trophic modeling applied to the marine environment is its ability to couple the multiple effects of both climate change and local anthropogenic activities, notably the development of offshore wind farms. The major challenge is to create scenarios to characterize their cumulative effects on the functioning of the entire socio-ecological system, in order to propose appropriate management plans. Although modeling cumulative impact on socio-ecological networks is not yet widely used, data reported in the present review article show that the relevance of this approach could be established in the context of offshore wind power.
View Article and Find Full Text PDFOncol Res
January 2025
College of Food Sciences, Al-Qasim Green University, Babylon, Iraq.
Cancer, a leading cause of global mortality, remains a significant challenge to increasing life expectancy worldwide. Forkhead Box R2 (FOXR2), identified as an oncogene within the FOX gene family, plays a crucial role in developing various endoderm-derived organs. Recent studies have elucidated FOXR2-related pathways and their involvement in both tumor and non-tumor diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!