Cognitive diagnostic models (CDMs) are of growing interest in educational research because of the models' ability to provide diagnostic information regarding examinees' strengths and weaknesses suited to a variety of content areas. An important step to ensure appropriate uses and interpretations from CDMs is to understand the impact of differential item functioning (DIF). While methods of detecting DIF in CDMs have been identified, there is a limited understanding of the extent to which DIF affects classification accuracy. This simulation study provides a reference to practitioners to understand how different magnitudes and types of DIF interact with CDM item types and group distributions and sample sizes to influence attribute- and profile-level classification accuracy. The results suggest that attribute-level classification accuracy is robust to DIF of large magnitudes in most conditions, while profile-level classification accuracy is negatively influenced by the inclusion of DIF. Conditions of unequal group distributions and DIF located on simple structure items had the greatest effect in decreasing classification accuracy. The article closes by considering implications of the results and future directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262994PMC
http://dx.doi.org/10.1177/0146621619858675DOI Listing

Publication Analysis

Top Keywords

classification accuracy
24
impact differential
8
differential item
8
item functioning
8
cognitive diagnostic
8
diagnostic models
8
group distributions
8
profile-level classification
8
dif
7
classification
6

Similar Publications

Objective: To conduct a meta-analysis assessing the diagnostic performance of the node reporting and data system (Node-RADS) for detecting lymph node (LN) invasion.

Method: We performed a systematic literature search of online scientific publication databases from inception up to July 31, 2024. We used the quality assessment of diagnostic accuracy studies-2 (QUADAS-2) to assess the study quality, and heterogeneity was determined by the Q-test and measured with I statistics.

View Article and Find Full Text PDF

Generative artificial intelligence enables the generation of bone scintigraphy images and improves generalization of deep learning models in data-constrained environments.

Eur J Nucl Med Mol Imaging

January 2025

Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.

Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.

Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.

View Article and Find Full Text PDF

Aim: To construct a predictive model based on the LODDS stage established for patients with late-onset colon adenocarcinoma to enhance survival stratification.

Methods: Late-onset colon adenocarcinoma data were obtained from the public database. After determining the optimal LODDS truncation value for the training set via X-tile software, we created a new staging system by integrating the T stage and M stage.

View Article and Find Full Text PDF

Average nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.

View Article and Find Full Text PDF

pLM4CPPs: Protein Language Model-Based Predictor for Cell Penetrating Peptides.

J Chem Inf Model

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States.

Cell-penetrating peptides (CPPs) are short peptides capable of penetrating cell membranes, making them valuable for drug delivery and intracellular targeting. Accurate prediction of CPPs can streamline experimental validation in the lab. This study aims to assess pretrained protein language models (pLMs) for their effectiveness in representing CPPs and develop a reliable model for CPP classification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!