A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). | LitMetric

Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH).

Dent Mater

Oral Bioengineering, Barts and the London School of Medicine and Dentistry, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK. Electronic address:

Published: August 2020

Objective: This study aims to incorporate 2:1 MgAl and 2:1 CaAl layered double hydroxides (LDHs) in experimental dental-composites to render them fluoride rechargeable. The effect of LDH on fluoride absorption and release, and their physico-mechanical properties are investigated.

Methods: 2:1 CaAl and 2:1 MgAl LDH-composite discs prepared with 0, 10 and 30wt% LDH were charged with fluoride (48h) and transferred to deionized water (DW)/artificial saliva (AS). Fluoride release/re-release was measured every 24h (ion-selective electrodes) with DW/AS replaced daily, and samples re-charged (5min) with fluoride every 2 days. Five absorption-release cycles were conducted over 10 days. CaAl and MgAl LDH rod-shaped specimens (dry and hydrated; 0, 10 and 30wt%) were studied for flexural strength and modulus. CaAl and MgAl LDH-composite discs (0, 10, 30 and 45wt% LDH) were prepared to study water uptake (over 7 weeks), water desorption (3 weeks), diffusion coefficients, solubility and cation release (ICP-OES).

Results: CaAl LDH and MgAl LDH-composites significantly increased the amount of fluoride released in both media (P<0.05). In AS, the mean release after every recharge was greater for MgAl LDH-composites compared to CaAl LDH-composites (P<0.05). After every recharge, the fluoride release was greater than the previous release cycle (P<0.05) for all LDH-composites. Physico-mechanical properties of the LDH-composites demonstrated similar values to those reported in literature. The solubility and cation release showed a linear increase with LDH loading.

Significance: LDH-composites repeatedly absorbed/released fluoride and maintained desired physico-mechanical properties. A sustained low-level fluoride release with LDH-composites could lead to a potential breakthrough in preventing early stage carious-lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2020.04.011DOI Listing

Publication Analysis

Top Keywords

caal mgal
12
fluoride rechargeable
8
mgal caal
8
caal layered
8
layered double
8
mgal ldh-composite
8
ldh-composite discs
8
mgal
6
caal
6
ldh
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!