Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids.

Planta

Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.

Published: June 2020

Nitro/oxidative modifications of proteins and RNA nitration resulted from altered peroxynitrite generation are elements of the indirect mode of action of canavanine and meta-tyrosine in plants Environmental conditions and stresses, including supplementation with toxic compounds, are known to impair reactive oxygen (ROS) and reactive nitrogen species (RNS) homeostasis, leading to modification in production of oxidized and nitrated derivatives. The role of nitrated and/or oxidized biotargets differs depending on the stress factors and developmental stage of plants. Canavanine (CAN) and meta-tyrosine (m-Tyr) are non-proteinogenic amino acids (NPAAs). CAN, the structural analog of arginine, is found mostly in seeds of Fabaceae species, as a storage form of nitrogen. In mammalian cells, CAN is used as an anticancer agent due to its inhibitory action on nitric oxide synthesis. m-Tyr is a structural analogue of phenylalanine and an allelochemical found in root exudates of fescues. In animals, m-Tyr is recognized as a marker of oxidative stress. Supplementation of plants with CAN or m-Tyr modify ROS and RNS metabolism. Over the last few years of our research, we have collected the complex data on ROS and RNS metabolism in tomato (Solanum lycopersicum L.) plants exposed to CAN or m-Tyr. In addition, we have shown the level of nitrated RNA (8-Nitro-guanine) in roots of seedlings, stressed by the tested NPAAs. In this review, we describe the model of CAN and m-Tyr mode of action in plants based on modifications of signaling pathways induced by ROS/RNS with a special focus on peroxynitrite induced RNA and protein modifications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293691PMC
http://dx.doi.org/10.1007/s00425-020-03411-4DOI Listing

Publication Analysis

Top Keywords

peroxynitrite induced
8
signaling pathways
8
non-proteinogenic amino
8
amino acids
8
mode action
8
canavanine meta-tyrosine
8
ros rns
8
rns metabolism
8
m-tyr
6
plants
5

Similar Publications

L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions.

View Article and Find Full Text PDF

Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.

View Article and Find Full Text PDF

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Nitric oxide and peroxynitrite as new biomarkers for early diagnosis of autism.

Brain Res

January 2025

Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States. Electronic address:

Autism spectrum disorder, or autism, is a neurodevelopmental disorder of the developing child's brain with a genetic causality. It can be diagnosed at about three years after birth when it begins to present itself via a range of neuropsychiatric symptoms. Nitric oxide is a crucial small molecule of life synthesized within cells of our body systems, including cells of our brain.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!