The structural differences between arteries and veins are genetically predetermined. Vascular identity markers, the molecular markers specific to veins and arteries, determine the differential development of vessels during embryogenesis and their expression persists in adult vessels. It is revealed that they can be reactivated under various pathophysiologic conditions even after vessel differentiation. Thus, once considered as quiescent in adults, vascular identity markers may actually play significant roles in vascular remodeling. Manipulation of vascular identity and the underlying molecular mechanisms might be a novel strategy to improve vascular remodeling for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000507627DOI Listing

Publication Analysis

Top Keywords

vascular identity
12
identity markers
8
vascular remodeling
8
vascular
5
pathophysiologic role
4
role molecules
4
molecules determining
4
determining arteriovenous
4
arteriovenous differentiation
4
differentiation adult
4

Similar Publications

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

Perception of health and illness and quality of life after total thyroidectomy for differentiated thyroid carcinoma: the PERSAM study.

Front Endocrinol (Lausanne)

January 2025

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padua, Italy.

Background: Differentiated thyroid carcinoma is the most common endocrine neoplasm; several studies have shown that individuals perceive the disease as being more severe than it actually is, resulting in a reduced quality of life. The primary aim of this study is to assess the quality of life and perception of illness among patients admitted for radiometabolic therapy, post total thyroidectomy for differentiated thyroid carcinoma. The secondary aim is to identify which patient characteristics are associated with a lower quality of life in order to improve and personalize care.

View Article and Find Full Text PDF

The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).

View Article and Find Full Text PDF

Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.

View Article and Find Full Text PDF

Endothelial-secreted Endocan activates PDGFRA and regulates vascularity and spatial phenotype in glioblastoma.

Nat Commun

January 2025

The Intellectual and Developmental Disabilities Research Center, The Semel Institute for Neuroscience and Human Behavior, and The Broad Stem Cell Research Center, The Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

Extensive neovascularization is a hallmark of glioblastoma (GBM). In addition to supplying oxygen and nutrients, vascular endothelial cells provide trophic support to GBM cells via paracrine signaling. Here we report that Endocan (ESM1), an endothelial-secreted proteoglycan, confers enhanced proliferative, migratory, and angiogenic properties to GBM cells and regulates their spatial identity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!