Acute lung injury (ALI) remains to be the major cause of mortality. Bleomycin (BLM) injury activates the pro-inflammatory cytokine Interleukin L-17A which regulates the expression of COX-2 and inhibits P-AMPKα in BLM/IL-17A exposed mice upon activation of NFκB and other inflammatory molecules the actual mechanism behind which remains unclear. The current investigation was carried out to assess the role of IL-17A with COX-2 and P- AMPKα and to highlight the important contribution of adjunctive use of curcumin as a promising preventive strategy for the BLM-induced ALI. Immunofluorescence analysis reveals that the natural spice curcumin blocks the expressions of COX-2, NF-κB-p65, fibronectin (FBN), and expresses P-AMPKα in vivo. Curcumin could also suppress the expressions of NF-κB-p105 in BLM/IL-17A exposed mice. mRNA expressions showed reduced expressions of PDGFA, PDGFB, CTGF, IGF1, NFκB1, NFκB2, MMP-3, MMP-9, and MMP-14 on curcumin treatment. Our study implicates a critical role of AMPKα/COX- 2 in the emergence of pulmonary fibrosis via exerting the potential role of curcumin as an adjuvant anti-inflammatory therapeutic for treating lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106676DOI Listing

Publication Analysis

Top Keywords

lung injury
12
activation nfκb
8
acute lung
8
blm/il-17a exposed
8
exposed mice
8
curcumin
6
expressions
5
curcumin il-17a
4
il-17a mediated
4
mediated pulmonary
4

Similar Publications

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.

Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!