Tangshen formula modulates gut Microbiota and reduces gut-derived toxins in diabetic nephropathy rats.

Biomed Pharmacother

Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China. Electronic address:

Published: September 2020

Growing evidence shows that diabetic kidney disease (DKD) is linked with intestinal dysbiosis from gut-derived toxins. Tangshen Formula (TSF) is a traditional Chinese herbal medicine that has been used to treat DKD. In this study, streptozotocin injection and uninephrectomy-induced diabetic nephropathy (DN) rat model was established to explore the impact of TSF on gut microbiota composition, gut-derived toxins, and the downstream inflammatory pathway of urotoxins in the kidney. TSF treatment for 12 weeks showed significant attenuation of both renal histologic injuries and urinary excretion of albumin compared with DN rats without treatment. TSF treatment also reconstructed gut dysbiosis and reduced levels of indoxyl sulfate and metabolic endotoxemia/lipopolysaccharide. MCP-1 and TNF-α were decreased by TSF both in the serum and kidney. In addition, we revealed that the inhibitory effect of TSF on renal inflammation was associated with the inhibition of aryl hydrocarbon, a receptor of indoxyl sulfate, and TLR4, thereby inhibiting JNK and NF-κB signaling in the kidney. Spearman correlation analysis found that a cluster of gut bacterial phyla and genera were significantly correlated with renal pathology, renal function, and systemic inflammation. In conclusion, orally administered TSF significantly inhibited diabetic renal injury, and modulated gut microbiota, which decreased levels of lipopolysaccharide and indoxyl sulfate, and attenuated renal inflammation. Our results indicate that TSF may be used as an agent in the prevention of gut dysbiosis and elimination of intestinal toxins in DN individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110325DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
gut-derived toxins
12
indoxyl sulfate
12
tangshen formula
8
diabetic nephropathy
8
tsf
8
tsf treatment
8
gut dysbiosis
8
renal inflammation
8
gut
6

Similar Publications

This study sought to compare bacterial abundance and diversity in milk and feces of healthy lactating women with patients suffering from lactation mastitis, explore the pathogenesis of lactation mastitis, and develop new ideas for its treatment and prevention from a microbiological perspective. A total of 19 lactating mastitis patients and 19 healthy lactating women were recruited. Milk and fecal Specimens were obtained from both groups, and microbial community structure was analyzed using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

is a common opportunistic pathogen that causes gastrointestinal diseases in livestock and poultry. Our preliminary research has demonstrated that administering oral yeast-cell microcapsule (YCM)-mediated DNA vaccines can effectively stimulate mucosal immunity, thereby preventing the occurrence of gastrointestinal diseases. In this study, the α-toxin gene was first cloned and the H126G and C-terminal (C247-370) mutations were created.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance.

View Article and Find Full Text PDF

Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!