Over 2 million mostly rural Americans are at risk of drinking water from private wells that contain arsenic (As) exceeding the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 micrograms per liter (μg/L). How well existing treatment technologies perform in real world situations, and to what extent they reduce health risks, are not well understood. This study evaluates the effectiveness of household As treatment systems in southern-central Maine (ME, n = 156) and northern New Jersey (NJ, n = 94) and ascertains how untreated well water chemistry and other factors influence As removal. Untreated and treated water samples, as well as a treatment questionnaire, were collected. Most ME households had point-of-use reverse-osmosis systems (POU RO), while in NJ, dual-tank point-of-entry (POE) whole house systems were popular. Arsenic treatment systems reduced well water arsenic concentrations ([As]) by up to two orders of magnitude, i.e. from a median of 71.7 to 0.8 μg/L and from a mean of 105 to 14.3 μg/L in ME, and from a median of 8.6 to 0.2 μg/L and a mean of 15.8 to 2.1 μg/L in NJ. More than half (53%) of the systems in ME reduced water [As] to below 1 μg/L, compared to 69% in NJ. The treatment system failure rates were 19% in ME (>USEPA MCL of 10 μg/L) and 16% in NJ (>NJ MCL of 5 μg/L). In both states, the higher the untreated well water [As] and the As(III)/As ratio, the higher the rate of treatment failure. POE systems failed less than POU systems, as did the treatment systems installed and maintained by vendors than those by homeowners. The 7-fold reduction of [As] in the treated water reduced skin cancer risk alone from 3765 to 514 in 1 million in ME, and from 568 to 75 in 1 million in NJ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429269 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2020.139683 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!