A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. | LitMetric

Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19.

Life Sci

Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Chemistry, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Published: September 2020

The new Coronavirus (SARS-CoV-2) is the cause of a serious infection in the respiratory tract called COVID-19. Structures of the main protease of SARS-CoV-2 (M), responsible for the replication of the virus, have been solved and quickly made available, thus allowing the design of compounds that could interact with this protease and thus to prevent the progression of the disease by avoiding the viral peptide to be cleaved, so that smaller viral proteins can be released into the host's plasma. These structural data are extremely important for in silico design and development of compounds as well, being possible to quick and effectively identify potential inhibitors addressed to such enzyme's structure. Therefore, in order to identify potential inhibitors for M, we used virtual screening approaches based with the structure of the enzyme and two compounds libraries, targeted to SARS-CoV-2, containing compounds with predicted activity against M. In this way, we selected, through docking studies, the 100 top-ranked compounds, which followed to subsequent studies of pharmacokinetic and toxicity predictions. After all the simulations and predictions here performed, we obtained 10 top-ranked compounds that were again in silico analyzed inside the M catalytic site, together some drugs that are being currently investigated for treatment of COVID-19. After proposing and analyzing the interaction modes of these compounds, we submitted one molecule then selected as template to a 2D similarity study in a database containing drugs approved by FDA and we have found and indicated Apixaban as a potential drug for future treatment of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289103PMC
http://dx.doi.org/10.1016/j.lfs.2020.117963DOI Listing

Publication Analysis

Top Keywords

virtual screening
8
identify potential
8
potential inhibitors
8
top-ranked compounds
8
treatment covid-19
8
compounds
7
screening adme/tox
4
adme/tox predictions
4
predictions drug
4
drug repurposing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!