In this work, four identical micro sensors on the same chip with noble metal decorated tin oxide nanowires as gas sensing material were located at different distances from an integrated heater to work at different temperatures. Their responses are combined in highly informative 4D points that can qualitatively (gas recognition) and quantitatively (concentration estimate) discriminate all the tested gases. Two identical chips were fabricated with tin oxide (SnO) nanowires decorated with different metal nanoparticles: one decorated with Ag nanoparticles and one with Pt nanoparticles. Support Vector Machine was used as the "brain" of the sensing system. The results show that the systems using these multisensor chips were capable of achieving perfect classification (100%) and good estimation of the concentration of tested gases (errors in the range 8-28%). The Ag decorated sensors did not have a preferential gas, while Pt decorated sensors showed a lower error towards acetone, hydrogen and ammonia. Combination of the two sensor chips improved the overall estimation of gas concentrations, but the individual sensor chips were better for some specific target gases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.05.015DOI Listing

Publication Analysis

Top Keywords

tin oxide
8
tested gases
8
decorated sensors
8
sensor chips
8
decorated
5
multi gas
4
sensors
4
gas sensors
4
sensors nanomaterial
4
nanomaterial temperature
4

Similar Publications

A label-free electrochemical biosensor for sensitive analysis of the PARP-1 activity.

Bioelectrochemistry

December 2024

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Early diagnosis of tumors is becoming increasingly important in modern healthcare. As studies have demonstrated, Poly(ADP)ribose polymerase-1 (PARP-1) is overexpressed in more aggressive tumors. Consequently, sensitive detection of PARP-1 activity holds significant practical importance in clinical diagnostics and biomedical research.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

A Review of Transparent Conducting Films (TCFs): Prospective ITO and AZO Deposition Methods and Applications.

Nanomaterials (Basel)

December 2024

Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.

This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.

View Article and Find Full Text PDF

A solution-gated indium-tin-oxide (ITO)-based field effect transistor (FET) without interfaces among the source, channel, and drain electrodes, which is called the one-piece ITO-FET, can be simply fabricated from a single sheet of ITO by etching the channel region. The direct contact of the ITO channel surface with a sample solution contributes to a steep subthreshold slope and a high on/off ratio. In this study, we have examined the effects of oxygen vacancies and hydroxy groups at the ITO channel surface on the electrical characteristics of the one-piece ITO-FET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!