The use of synthetic pesticides in agriculture is increasingly debated. However, few studies have compared the impact of synthetic pesticides and alternative biopesticides on non-target soil microorganisms playing a central role in soil functioning. We conducted a mesocosm experiment and used high-throughput amplicon sequencing to test the impact of a fungal biopesticide and a synthetic fungicide on the diversity, the taxonomic and functional compositions, and co-occurrence patterns of soil bacterial, fungal and protist communities. Neither the synthetic pesticide nor the biopesticide had a significant effect on microbial α-diversity. However, both types of pesticides decreased the complexity of the soil microbial network. The two pesticides had contrasting impacts on the composition of microbial communities and the identity of key taxa as revealed by microbial network analyses. The biopesticide impacted keystone taxa that structured the soil microbial network. The synthetic pesticide modified biotic interactions favouring taxa that are less efficient at degrading organic compounds. This suggests that the biopesticides and the synthetic pesticide have different impact on soil functioning. Altogether, our study shows that pest management products may have functionally significant impacts on the soil microbiome even if microbial α-diversity is unaffected. It also illustrates the potential of high-throughput sequencing analyses to improve the ecotoxicological risk assessment of pesticides on non-target soil microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139635DOI Listing

Publication Analysis

Top Keywords

synthetic pesticide
12
microbial network
12
soil
9
impact synthetic
8
synthetic fungicide
8
soil bacterial
8
bacterial fungal
8
fungal protist
8
protist communities
8
communities synthetic
8

Similar Publications

Light-promoted aromatic denitrative chlorination.

Nat Chem

January 2025

CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.

Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the C-NO bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Rapid pesticide residues detection by portable filter-array hyperspectral imaging.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072 China. Electronic address:

The detection of pesticide residues in agricultural products is crucial for ensuring food safety. However, traditional methods are often constrained by slow processing speeds and a restricted analytical scope. This study presents a novel method that uses filter-array-based hyperspectral imaging enhanced by a dynamic filtering demosaicking algorithm, which significantly improves the speed and accuracy of detecting pesticide residues.

View Article and Find Full Text PDF

The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.

View Article and Find Full Text PDF

Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory.

Bioresour Technol

January 2025

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China. Electronic address:

Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!