Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In industrial and military settings, individuals who suffer from one episode of acoustic trauma are likely to sustain another episode of acoustic stress, creating an opportunity for a potential interaction between the two stress conditions. We previously demonstrated that acoustic overstimulation perturbs the cochlear immune environment. However, how the cochlear immune system responds to repeated acoustic overstimulation is unknown. Here, we used a mouse model to investigate the cochlear immune response to repeated stress. We reveal that exposure to an intense noise at 120 dB SPL for 1 h activates the cochlear immune response in a time-dependent fashion with substantial expansion and activation of the macrophage population in the cochlea at 2-days post-exposure. At 20-days post-exposure, the number and pro-inflammatory phenotypes of cochlear macrophages have significantly subsided, but have yet to return to homeostatic levels. Monocytes with anti-inflammatory phenotypes are recruited into the cochlea. With the presence of this residual immune activation, a second exposure to the same noise provokes an exaggerated inflammatory response as evidenced by exacerbated maturation of macrophages. Furthermore, the second noise causes greater sensory cell pathogenesis. Unlike the first noise-induced damage that occurs mainly between 0 and 2 days post-exposure, the second noise-induced damage occurs more frequently between 2 and 20 days post-exposure, the period when secondary damage takes place. These observations suggest that repeated acoustic overstimulation exacerbates cochlear inflammation and secondary sensory cell pathogenesis. Together, our results suggest that the cochlear immune system plays an important role in modulating cochlear responses to repeated acoustic stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359731 | PMC |
http://dx.doi.org/10.1016/j.heares.2020.107996 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!