Chloroplast history clarified by the criterion of light-harvesting complex.

Biosystems

St. Petersburg State University, Department of Microbiology, St. Petersburg, Russia. Electronic address:

Published: October 2020

Bacterial essence of mitochondria and chloroplasts was initially proclaimed in general outline. Later, the remarkable insight gave way to an elaborate hypothesis. Finally, it took shape of a theory confirmed by molecular biology data. In particular, the rrn operon, which is the key phylogeny marker, locates chloroplasts on the tree of Cyanobacteria. Chloroplast ancestry and diversity can be also traced with the rpoС and psbA genes, rbc operon, and other molecular criteria of prime importance. Another criterion, also highly reliable, is light-harvesting complex (LHC). LHC pigment and protein moieties specify light acclimation strategies in evolutionary retrospect and modern biosphere. The onset of symbiosis between eukaryotic host and pre-chloroplast, as well as further mutual adjustment of partners depended on physiological competence of LHC. In this review, the criterion of LHC is applied to the origin and diversity of chloroplasts. In particular, ancient cyanobacterium possessing tandem antenna (encoded by the cbp genes and the pbp genes, correspondingly), and defined as a prochlorophyte, is argued to be chloroplast ancestor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2020.104173DOI Listing

Publication Analysis

Top Keywords

light-harvesting complex
8
chloroplast history
4
history clarified
4
clarified criterion
4
criterion light-harvesting
4
complex bacterial
4
bacterial essence
4
essence mitochondria
4
mitochondria chloroplasts
4
chloroplasts initially
4

Similar Publications

Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.

View Article and Find Full Text PDF

Molecular glue for phycobilisome attachment to photosystem II in sp. PCC 7002.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.

Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.

View Article and Find Full Text PDF

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!