Effects of freeze-thaw cycles on the structure and emulsifying properties of peanut protein isolates.

Food Chem

College of Art and Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Published: November 2020

This study investigated changes of the structure and emulsifying properties of peanut protein isolate (PPI) during multiple freeze-thaw (F-T) cycles. According to the Fourier transform infrared spectrum, the F-T treatment to PPI reduced the content of protein ordered structure significantly. The result of fluorescence spectrum revealed that the polarity of PPI surroundings first increased and then decreased. Similarly, the free sulfhydryl content and surface hydrophobicity of PPI increased firstly and decreased. However, the carbonyl content and particle size of PPI increased continuously after F-T treatment. The emulsification performance of PPI after F-T treatment was significantly improved. The emulsion prepared by PPI after 3 F-T cycles had the smallest mean particle size, the highest absolute value of zeta-potential and the most uniform microstructure distribution, showed the best performance of emulsifying ability. Therefore, it can be known that F-T cycles treatment could effectively change protein structure and improve protein emulsifying properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.127215DOI Listing

Publication Analysis

Top Keywords

emulsifying properties
12
f-t cycles
12
f-t treatment
12
structure emulsifying
8
properties peanut
8
peanut protein
8
ppi increased
8
particle size
8
ppi f-t
8
ppi
7

Similar Publications

Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. Extraction at 540 W for 2 min with a 1:20 (g/mL) was determined as the optimal parameter, resulting in a maximum yield of 5.90 % (w/w) with 63 % carbohydrate content consisting of glucose, galactose, maltose, mannose, and galacturonic acid, with structural linkages of β (1 → 4) and β (1 → 6) glycosidic bonds.

View Article and Find Full Text PDF

Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.

View Article and Find Full Text PDF

Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate.

Foods

January 2025

Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.

View Article and Find Full Text PDF

Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review.

Foods

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.

As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.

View Article and Find Full Text PDF

Oil-in-Water Emulsions Made of Pistachio Oil: Physical and Chemical Properties and Stability.

Foods

December 2024

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.

Pistachio nuts are valued for their sensory qualities, nutritional benefits, and health-promoting properties. Pistachio oil has also gained interest for its bioactive compounds, though these are sensitive to processing and environmental stresses. While pistachio-based products are commercially available, little research has addressed the emulsifying properties of crude pistachio oil or its impact on the stability and bioactive profile of oil-in-water (O/W) emulsions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!