Identification and characterization of anti-diabetic principle in Senna alata (Linn.) flower using alloxan-induced diabetic male Wistar rats.

J Ethnopharmacol

Antioxidant, Redox Biology and Toxicology Research Laboratory, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.

Published: October 2020

Ethno-pharmacological Relevance: The age-long folkloric use of Senna alata flower (SAF) was recently substantiated with scientific evidence. However, the study did not account for the anti-diabetic principle(s) in SAF.

Aim Of The Study: The study aimed to identify and characterize the bioactive principle(s) responsible for the anti-diabetic activity in SAF.

Materials And Methods: Ninety-one male Wistar rats were used for the two phases of this study. In phase 1, forty-two of these were allotted into six groups (A-F) of seven rats each. Animals in group A received distilled water while those in groups B-F were made diabetic by treatment with 150 mg/kg body weight (b.w.) of alloxan. Group B received 0.5 mL of distilled water; C, D and E were treated each with 75 mg/kg b.w. of ethyl acetate, n-butanol and aqueous residual fractions of SAF, while F received 2.5 mg/kg b.w. of glibenclamide. In the second phase, forty-nine rats were assigned into seven groups (A-G) of seven rats each. Group A received distilled water. Animals in Groups B-G were also made diabetic by alloxan treatment. B received 0.5 mL of distilled water; C, D, E and F were treated with 5.77, 25.96, 15.40, 27.87 mg/kg b.w (equivalent dose of 75 mg/kg b.w.) of sub-fractions obtained from the ethyl acetate fraction of SAF respectively whereas G received 2.5 mg/kg b.w. of glibenclamide. Fasting blood glucose (FBG), serum lipids, albumin, globulin, liver glycogen, urine ketone, hexokinase and glucose-6-phosphate dehydrogenase activities, α-glucosidase and α-amylase inhibitory activities and cardiac function indices were evaluated using standard methods. Compounds D, E and F isolated from ethyl acetate sub-fraction B were evaluated for in vitro anti-diabetic activity. The structure of the anti-diabetic compound was identified using FTIR, H-NMR, ³C-NMR, HCOSY, HSQC and HMBC. Data were subjected to Analysis of Variance and Duncan Multiple Range Test at p < 0.05.

Results: Alloxan treatment increased the levels of FBG, total cholesterol, LDL-cholesterol, VLDL-cholesterol, urine ketone and cardiac function indices and reduced the levels of globulin, albumin, HDL-cholesterol, globulin, liver glycogen, hexokinase and glucose-6-phosphate dehydrogenase activities. Ethyl acetate fraction and sub-fraction B reversed the level and/or activities of these biochemical indices to levels and/or activities that compared favourably with the distilled water treated non-diabetic animals. Of the three compounds (D, E and F) that were obtained from the sub-fraction B, compound E which was Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) produced the highest α-glucosidase and α-amylase inhibitory activities.

Conclusion: Emodin is one of the bioactive constituents present in Senna alata flower.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2020.112997DOI Listing

Publication Analysis

Top Keywords

distilled water
16
group received
12
ethyl acetate
12
senna alata
8
male wistar
8
wistar rats
8
anti-diabetic activity
8
received distilled
8
received 05 ml
8
05 ml distilled
8

Similar Publications

Longitudinal single-cell RNA sequencing reveals a heterogeneous response of plasma cells to colonic inflammation.

Int J Biol Macromol

January 2025

Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:

A comprehensive understanding of the dynamic changes in plasma cells (PCs) during inflammation remains elusive. In this study, we analyzed the distinct responses of PCs across different phases of inflammation in a dextran sodium sulfate (DSS)-induced mouse colitis model. Six-week-old male C57BL/6 mice were treated with 2.

View Article and Find Full Text PDF

A preclinical study on effect of betanin on sodium fluoride induced hepatorenal toxicity in wistar rats.

J Complement Integr Med

January 2025

Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Background: In humans, larger artery stiffening is associated with increased tau phosphorylation and neurodegeneration. However, because arterial stiffness often co-occurs with other age-related conditions like hypertension, atherosclerosis, and diabetes, it is nearly impossible to distill the underlying mechanisms specifically linking arterial stiffening to abnormal brain function. We leveraged a surgical mouse model of larger artery stiffening and used it concurrently with a transgenic Alzheimer's disease (AD) mouse model of tau pathology to investigate the impact of larger artery stiffening on cognition.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Ibadan, Ibadan, Oyo, Nigeria.

Background: The brain is a potential target for aluminium toxicity as it induces oxidative stress, strategies, rich in polyphenolic compound, containing flavonoid and possessing antioxidant property, found in natural plant products, to attenuate aluminium-induced impairments could provide a potential therapeutic intervention and protection for aluminium neurotoxicity.

Method: Forty adult rats weighing between 160 - 165g was used. The rats were divided into four groups (n = 10).

View Article and Find Full Text PDF

Background: Sleep deprivation leads to an increase in oxidative stress and activation of inflammatory response and both could increase the production and accumulation of toxic beta-amyloid in the hippocampus which is considered one of the molecular drivers of Alzheimer's pathogenesis and progression. Despite these findings, obtaining sleep is still challenging in our modern society that values work around the clock. Omega-3 fatty acids represents an active biological agent with vital antioxidant and anti-inflammatory activities that could protect memory in the face of insufficient sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!