Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted-based dispersive solid-phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high-performance liquid chromatography with diode-array detection. Recoveries for the studied triazines were within the range of 75.2-94.1%, with relative standard deviations lower than 11.3% (n = 3). The limits of detection were within 0.16-0.51 µg/L, depending upon the triazine and the type of sample analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202000230 | DOI Listing |
JACS Au
December 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
The chemical similarities between trivalent actinides [An(III)] and lanthanides [Ln(III)] present a significant challenge in differentiating and separating them, which is a key step toward closing the nuclear fuel cycle. However, the existing separation approaches commonly suffer from demerits such as inadequate separation factors, limited stripping efficiency, and undesired coextraction. In this study, a novel unsymmetrical phenanthroline-derived amide-triazine (Et-Tol-CyMe-ATPhen) extractant was first designed and then screened with theoretical computation.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
Here we covalently constructed abundant long-chain hydroxyl groups-functionalized magnetic microporous organic networks (MMON-2OH) for detection of eight Triazine herbicides (THs) in honey and water samples. MMON-2OH owned a high surface area (287.86 m²/g), enhanced water compatibility, and increased exposure of long-chain hydroxyl groups, which significantly improved enrichment capacity for THs.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Laboratory of Clinical Pharmacy and Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan. Electronic address:
Gimeracil, a component in S-1 (an oral anticancer agent comprising tegafur, a prodrug of 5-fluorouracil (5-FU), potassium oxonate, and gimeracil), inhibits metabolic enzymes, thereby impeding 5-FU degradation. Therefore, the blood level of gimeracil is closely associated with the disposition of 5-FU, and quantification of gimeracil can provide important information if a case shows an inappropriate 5-FU blood concentration. Nevertheless, methods for quantifying gimeracil in human plasma are rarely reported.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
Food Chem
March 2025
Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
A novel, environmentally friendly, and efficient method for determining triazine herbicides in water, tea, and juice was developed by combining magnetic dispersive micro-solid phase extraction (MD-μSPE) with magnetic dispersive liquid-liquid microextraction (MDLLME), followed by high-performance liquid chromatography (HPLC). The pretreatment process, utilized magnetic biochar (MBC) and magnetic deep eutectic solvent (MDES) as the adsorbent and extractant, respectively. Fe(NO) was loaded onto waste mushroom sticks to prepare MBC via impregnation-pyrolysis, while tri-n-butylphosphine oxide, nonanoic acid, and FeCl were combined through hydrogen bonds to form MDES.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!