Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Membrane tethers play a critical role in organizing the complex molecular architecture of eukaryotic cells. Uso1 (yeast homolog of human p115) is essential for tethering in vesicle transport from ER to Golgi and interacts with Ypt1 GTPase. The N-terminal globular head domain of Uso1 is responsible for Ypt1 binding; however, the mechanism of tethering between ER transport vesicles and Golgi is unknown. Here, we determined two crystal structures for the Uso1 N-terminal head domain in two alternative conformations. The head domain of Uso1 exists as a monomer, as confirmed using size-exclusion chromatography coupled to multi-angle light scattering and analytical gel filtration. Although Uso1 consists of a right-handed α-solenoid, like that in mammalian homologs, the overall conformations of both Uso1 structures were not similar to previously known p115 structures, suggesting that it adopts alternative conformations. We found that the N- and C-terminal regions of the Uso1 head domain are connected by a long flexible linker, which may mediate conformational changes. To analyse the role of the alternative conformations of Uso1, we performed molecular docking of Uso1 with Ypt1, followed by a structural comparison. Taken together, we hypothesize that the alternative conformations of Uso1 regulate the precise docking of vesicles to Golgi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293329 | PMC |
http://dx.doi.org/10.1038/s41598-020-66480-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!