Biocatalysts that perform C-H hydroxylation exhibit exceptional substrate specificity and site-selectivity, often through the use of high valent oxidants to activate these inert bonds. Rieske oxygenases are examples of enzymes with the ability to perform precise mono- or dioxygenation reactions on a variety of substrates. Understanding the structural features of Rieske oxygenases responsible for control over selectivity is essential to enable the development of this class of enzymes for biocatalytic applications. Decades of research has illuminated the critical features common to Rieske oxygenases, however, structural information for enzymes that functionalize diverse scaffolds is limited. Here, we report the structures of two Rieske monooxygenases involved in the biosynthesis of paralytic shellfish toxins (PSTs), SxtT and GxtA, adding to the short list of structurally characterized Rieske oxygenases. Based on these structures, substrate-bound structures, and mutagenesis experiments, we implicate specific residues in substrate positioning and the divergent reaction selectivity observed in these two enzymes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293229 | PMC |
http://dx.doi.org/10.1038/s41467-020-16729-0 | DOI Listing |
J Am Chem Soc
November 2024
Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
Dioxygen (O) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on -dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the -dihydroxylation reactions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.
Sulfonamides are frequently detected with high concentrations in various environments and was regarded as a serious environmental risk by fostering the dissemination of antibiotic resistance genes. This study for the first time reported a strain SNF1 affiliated with Hydrogenophaga can efficiently degrade sulfamethoxazole (SMX). Strain SNF1 prefers growing under extra carbon sources and neutral condition, and could degrade 500 mg/L SMX completely within 16 h.
View Article and Find Full Text PDFACS Catal
September 2024
Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species.
View Article and Find Full Text PDFMethods Enzymol
September 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India. Electronic address:
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions.
View Article and Find Full Text PDFMethods Enzymol
September 2024
Department of Biological Sciences, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States. Electronic address:
Rieske non-heme iron oxygenases are ubiquitously expressed in prokaryotes. These enzymes catalyze a wide variety of reactions, including cis-dihydroxylation, mono-hydroxylation, sulfoxidation, and demethylation. They contain a Rieske-type [2Fe-2S] cluster and an active site with a mono-nuclear iron bound to a 2-His carboxylate triad.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!