Electronic band structures of pristine and chemically modified cellulose allomorphs.

Carbohydr Polym

Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076, Aalto, Finland. Electronic address:

Published: September 2020

We have investigated the structural properties, vibrational spectra, and electronic band structures of crystalline cellulose allomorphs and chemically modified cellulose with quantum chemical methods. The electronic band gaps of cellulose allomorphs I, I, II, and III lie in the range of 5.0 to 5.6 eV. We show that extra states can be created in the band gap of cellulose by chemical modification. Experimentally feasible amidation of cellulose I with aniline or 4,4' diaminoazobenzene creates narrow bands in the cellulose band gap, reducing the difference between the occupied and empty states to 4.0 or 1.8 eV, respectively. The predicted states 4,4'diaminoazobenzene-modified cellulose I fall in the visible spectrum, suggesting uses in optical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116440DOI Listing

Publication Analysis

Top Keywords

electronic band
12
cellulose allomorphs
12
band structures
8
chemically modified
8
cellulose
8
modified cellulose
8
band gap
8
structures pristine
4
pristine chemically
4
allomorphs investigated
4

Similar Publications

Semiconducting transition metal dichalcogenides (TMDs) possess exceptional photoelectronic properties, rendering them excellent channel materials for phototransistors and holding great promise for future optoelectronics. However, the attainment of high-performance photodetection has been impeded by challenges pertaining to electrical contact. To surmount this obstacle, we introduce a phototransistor architecture, in which the WS channel is connected with an alternating WS-WSe strip superstructure, strategically positioned alongside the source and drain contact regions.

View Article and Find Full Text PDF

The tunable electronic band structure of a AlP/CsBiICl van der Waals heterostructure induced by an electric field: a first-principles study.

Phys Chem Chem Phys

January 2025

Key Laboratory of Hunan Province on Information Photonics and Freespace Optical Communications, School of Physics and Electronics Science, Hunan Institute of Science and Technology, Yueyang 414006, People's Republic of China.

Constructing van der Waals heterostructures (vdWHs) has emerged as an attractive strategy to combine and enhance the optoelectronic properties of stacked materials. Herein, by means of first-principles calculations, we investigate the geometric and electronic structures of the AlP/CsBiICl vdWH as well as its tunable band structure an external electric field. The AlP/CsBiICl vdWH is structurally and thermodynamically stable due to the low binding energy and the small energy fluctuation at room temperature.

View Article and Find Full Text PDF

Towards Rational Design of Confined Catalysis in Carbon Nanotube by Machine Learning and Grand Canonical Monte Carlo Simulations.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

The microenvironment is recognized to be as crucial as active sites in heterogeneous catalysis. It was found that the catalytic activity of a set of chemical reactions can be significantly influenced by the confined space of carbon nanotubes (CNTs), with some reactions showing superior activity, while others experience a negative impact. The rational design of confined catalysis must rely on the accurate insights of confined microenvironment.

View Article and Find Full Text PDF

We demonstrate high-throughput evaluation of the half-metallicity of CoMnSi Heusler alloys by spin-integrated hard X-ray photoelectron spectroscopy (HAXPES) of composition-spread films performed with high-brilliance synchrotron radiation at NanoTerasu, which identifies the optimum composition showing the best half-metallicity. Co Mn Si composition-spread thin films for  = 10-40% with a thickness of 30 nm are fabricated on MgO(100) substrates using combinatorial sputtering technique. The 2-ordering and (001)-oriented epitaxial growth of CoMnSi are confirmed by X-ray diffraction for  = 18-40%.

View Article and Find Full Text PDF

Ultrahigh carrier mobility and multidirectional piezoelectricity in 2D Janus copper-containing chalcogenide monolayers.

Phys Chem Chem Phys

January 2025

Institute for Computational Materials Science, Joint Center for Theoretical Physics, and Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

Two-dimensional (2D) materials have attracted enormous research attention due to their remarkable properties and potential applications in electronic and optoelectronic devices. In this work, Janus 2D copper-containing chalcogenides, CuPSeS and CuPTeSe monolayers, are proposed and studied systematically based on first-principles calculations. These two Janus-structured materials possess the same thermal and dynamic stability as the perfect CuPSe structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!