Background: Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase.
Methods: Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund's complete adjuvant (FCA)-induced hindpaw inflammation.
Results: Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons.
Conclusion: Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291517 | PMC |
http://dx.doi.org/10.1186/s12974-020-01864-8 | DOI Listing |
Paediatr Drugs
January 2025
Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China.
Background: This study aimed to provide a comprehensive review of adverse events (AEs) associated with factor Xa (FXa) inhibitors in pediatric patients.
Methods: We searched PubMed, Embase, Cochrane Library, ClinicalTrials.gov, and the European Union Clinical Trials Register for English-language records from the establishment of the database up to October 17, 2023.
Scand J Psychol
January 2025
Psychiatry Northwest, Region Stockholm, Sollentuna, Sweden.
Enduring loneliness has serious physical and mental health implications. Patients with mental health problems are at risk of experiencing problems related to loneliness. Therefore, it is important to increase knowledge about how loneliness is experienced and managed in this particular group.
View Article and Find Full Text PDFExpert Rev Clin Pharmacol
January 2025
Department of Medical Cosmetology, Hunan Provincial Hospital of Maternal and Child Health Care.
Background: Anrikefon (HSK21542), a potent and selective peripheral kappa opioid receptor (KOR) agonist developed by Haisco, effectively blocks pain and itch signals.
Aim: To develop a population pharmacokinetic (PK) model for anrikefon and conduct exposure-response (E-R) analysis for safety and efficacy in postoperative pain patients.
Method: The Population PK analysis uses NONMEM software with data from six trials.
Eur J Med Res
January 2025
Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.
Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No.555 Friendship East Road, South Gate, Beilin District, Xi'an, 710054, Shaanxi, China.
This study delved into the molecular mechanisms underlying mechanical stress-induced intervertebral disc degeneration (msi-IDD) through single-cell and high-throughput transcriptome sequencing in mouse models and patient samples. Results exhibited an upsurge in macrophage presence in msi-IDD intervertebral disc (IVD) tissues, with secreted phosphoprotein 1 (SPP1) identified as a pivotal driver exacerbating degeneration via the protein kinase RNA-like endoplasmic reticulum kinase/ activating transcription factor 4/ interleukin-10 (PERK/ATF4/IL-10) signaling axis. Inhibition of SPP1 demonstrated promising outcomes in mitigating msi-IDD progression in both in vitro and in vivo models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!