Poly(zwitterions) polymer brushes were fabricated by surface-initiated atom transfer radical polymerization (SI-ATRP) on PVA substrate. The results of XPS and FTIR proved the successful graft of CBMA and SBMA to PVA. The surface of the PVA films would be rougher after the functionalization. Its hydrophilicity increased dramatically and the water contact angle decreased from 45.2° to 7.2°. The visible light transmittance was above 88%. Mechanical properties decreased slightly after grafting, the tensile strength and tensile strain at break were in 1.23-1.85 MPa and 361.7-471.1%, respectively. The anti-protein adsorption performance of the modified PVA film was significantly enhanced and the lowest adsorption amount was up to 2.25 μg/cm. The cytotoxicity grade of modified PVA film was 0-1, which indicated the modified film possessed no cytotoxicity. Additionally, the surface of zwitterion-grafted PVA film had strongly resistance to cell adhesion. All the results confirmed that the zwitterions modified PVA was a promising anti-fouling material for the further biomedical use.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2020.1780681DOI Listing

Publication Analysis

Top Keywords

modified pva
12
pva film
12
pva
8
enhancing antifouling
4
antifouling property
4
property pva
4
pva membrane
4
membrane grafting
4
grafting zwitterionic
4
zwitterionic polymer
4

Similar Publications

Antimicrobial biodegradable packaging films from phosphorylated starch: A sustainable solution for plastic waste.

Carbohydr Res

January 2025

Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India. Electronic address:

This study focused on developing biodegradable packaging films based on starch as an alternative to non-biodegradable such as petroleum-derived synthetic polymers. To improve its physicochemical properties, potato starch was chemically modified through phosphorylation. Starch phosphorylation was carried out using cyclic 1,3-propanediol phosphoryl chloride (CPPC), produced phosphorylated starch (PS), and analyzed using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Nuclear magnetic resonance (NMR), and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

The broad application of starch films has been significantly limited by their insufficient hydrophobicity and antibacterial activity. To overcome these challenges, this study developed a new starch film by incorporating polyvinyl alcohol (PVA) and chlorogenic acid. The study explored the impact of PVA polymerization on the physical and functional characteristics of the resulting films, with particular emphasis on enhancing antimicrobial functionality by incorporating chlorogenic acid.

View Article and Find Full Text PDF

BSA/PEI/GOD modified cellulose nanocrystals for construction of hydrogel-based flexible glucose sensors for sweat detection.

J Mater Chem B

January 2025

School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.

With the miniaturization, integration and intelligence of sweat electrochemical sensor technology, hydrogel flexible sensors have demonstrated immense potential in the field of real-time and non-invasive personal health monitoring. However, it remains a challenge to integrate excellent mechanical properties, self-healing properties, and electrochemical sensing capabilities into the preparation of hydrogel-based flexible sensors. The utilization of CBPG (cellulose nanocrystals (CNCs)@bovine serum albumin (BSA)@polyethyleneimine (PEI) glucose oxidase (GOD) nanomaterial) as both an enhancing phase and sensor probe within a hydrogel matrix, with poly(vinyl alcohol) (PVA) serving as the primary network constituent, has been proposed as a non-invasive technique for monitoring trace glucose levels in sweat.

View Article and Find Full Text PDF

Cellulose nanofiber-reinforced antimicrobial and antioxidant multifunctional hydrogel with self-healing, adhesion for enhanced wound healing.

Carbohydr Polym

March 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.

Current conventional wound dressings used for wound healing are often characterized by restricted bioactivity and devoid of multifunctionality resulting in suboptimal treatment and prolonged healing. Despite recent advances, the simultaneous incorporation of excellent flexibility, good mechanical performance, self-healing, bioactivity, and adhesion properties into the dressings without complicating their efficacy while maintaining simple synthesis remains a grand challenge. Herein, we effectively synthesized hybrid hydrogels of cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and curcumin-modified silver nanoparticles (cAg) through a one-step synthesis method based on hydrogen bonds, dynamic boronic ester bonds, and coordinate covalent bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!