In this work, composites based on epoxy resin and various carbon nanotubes (CNTs) were studied regarding their thermoelectric properties. The epoxy composites were prepared by infiltration of preformed CNT buckypapers. The influence of different types of CNTs on the Seebeck coefficient was investigated, namely lab-made and commercially available multi walled carbon nanotubes (MWCNTs), lab-made nitrogen doped MWCNTs (N-MWCNT) and commercially available single walled carbon nanotubes (SWCNTs). It was found that only by varying the lab-made MWCNT content could both n- and p-type composites be produced with Seebeck coefficients between -9.5 and 3.1 µV/K. The incorporation of N-MWCNTs resulted in negative Seebeck coefficients of -11.4 to -17.4 µV/K. Thus, the Seebeck coefficient of pure SWCNT changed from 37.4 to -25.5 µV/K in the epoxy/1 wt. % SWCNT composite. A possible explanation for the shift in the Seebeck coefficient is the change of the CNTs Fermi level depending on the number of epoxy molecules on the CNT surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353176PMC
http://dx.doi.org/10.3390/nano10061144DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
seebeck coefficient
12
walled carbon
8
seebeck coefficients
8
seebeck
5
nanocomposites n-type
4
n-type conductivity
4
conductivity controlled
4
controlled type
4
type content
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!