Despite more than one hundred years of work on organosilicon chemistry, the basis for the plausibility of silicon-based life has never been systematically addressed nor objectively reviewed. We provide a comprehensive assessment of the possibility of silicon-based biochemistry, based on a review of what is known and what has been modeled, even including speculative work. We assess whether or not silicon chemistry meets the requirements for chemical diversity and reactivity as compared to carbon. To expand the possibility of plausible silicon biochemistry, we explore silicon's chemical complexity in diverse solvents found in planetary environments, including water, cryosolvents, and sulfuric acid. In no environment is a life based primarily around silicon chemistry a plausible option. We find that in a water-rich environment silicon's chemical capacity is highly limited due to ubiquitous silica formation; silicon can likely only be used as a rare and specialized heteroatom. Cryosolvents (e.g., liquid N) provide extremely low solubility of all molecules, including organosilicons. Sulfuric acid, surprisingly, appears to be able to support a much larger diversity of organosilicon chemistry than water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345352 | PMC |
http://dx.doi.org/10.3390/life10060084 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Transition-metal-catalyzed enantioselective C-H activation has transformed the landscape of asymmetric synthesis, enabling the efficient conversion of C-H bonds into C-C and carbon-heteroatom (C-X) bonds. However, the formation of C-S bonds through enantioselective C-H thiolation remains underdeveloped due to challenges such as catalyst deactivation and competitive coordination of sulfur-containing compounds with chiral ligands. Herein, we report an unprecedented approach to constructing sulfur-substituted planar chiral ferrocenes (PCFs) through copper-mediated enantioselective C-H thiolation enabled by only a 2.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Organosilicon Chemistry and Materials Technology of the Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
As many treatments kill tumor cells by inducing apoptosis, fluorescent probes that can detect apoptosis are crucial for effective feedback regarding tumor therapy outcomes (in particular, activatable probes for better imaging). Cathepsins are enzymes that are released from lysosomes into the cytoplasm during lysosomal membrane permeabilization-induced apoptosis of many tumor cells, making them potential biomarkers of apoptotic cells. Despite their potential, to the best of our knowledge, no cathepsin-activatable fluorescent probes have been reported for this purpose.
View Article and Find Full Text PDFChemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.
We demonstrate here an efficient and facile Ni-catalyzed electrochemical cross-electrophile thiolation approach for readily available alkyl alcohols with pyridyl thioesters. This C(sp)-S bond-forming modular strategy displays extensive substrate adaptability and good functional group tolerance, which allows the production of a range of alkyl sulfides with specific chemoselectivity. Furthermore, the potential applications of this methodology are illustrated by last-stage modification of bioactive molecules and sulfinylative cross-couplings.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Recently, nickel catalysts have garnered considerable attention for their efficacy and versatility in asymmetric catalysis, attributed to their distinctive properties. However, the use of cost-effective and sustainable divalent nickel catalysts in C-H activation/asymmetric alkene insertion poses significant challenges due to the intricate control of stereochemistry in the transformation of the tetracoordinate C-Ni(II) intermediate. Herein, we report a Ni(II)-catalyzed enantioselective C-H/N-H annulation with oxabicyclic alkenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!