A lobster-inspired bending module for compliant robotic applications.

Bioinspir Biomim

Department of Mechanical and Aerospace Engineering, Monash University, VIC 3168, Austraila.

Published: July 2020

Ideally, robots may be designed to adapt to different tasks such as heavy lifting and handling delicate objects, in which the requirements in force compliance and position accuracy vary dramatically. While conventional rigid actuators are usually characterized by high precision and large force output, soft actuators are designed to be more compliant and flexible. In this paper, a lobster-inspired bending module with compliant actuation, enhanced torque output, and reconfigurability in assembling is presented. It is also capable of accurate control of its angular position with variable stiffness. Inspired by the anatomic structure of the lobster leg joint, the bending module has antagonistic soft chambers for actuation and rigid shells for structural protection and support. Theoretical models have been developed and their capability of independently adjusting both the bending angle and stiffness has been evaluated through experiments. A control strategy is constructed to realize angle control and stiffness adaptation. In order to demonstrate various applications of the proposed bending module, reconfigurable robotic fingers are assembled and shown to be capable of generating different motion profiles. In addition, robotic grippers are built for lifting both delicate and heavy objects, demonstrating applications that require both high force and compliant handling.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ab9c8dDOI Listing

Publication Analysis

Top Keywords

bending module
16
lobster-inspired bending
8
module compliant
8
module
4
compliant
4
compliant robotic
4
robotic applications
4
applications ideally
4
ideally robots
4
robots designed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!