Transition metal dichalcogenides (TMDs) materials are from the two-dimensional (2D) materials family and have many benefits, comprising high carrier mobility and conductivity, high optical transparency, outstanding mechanical flexibility, and chemical stability, and are also favorable gas sensing materials because of their high surface-area-to-volume ratio. Nevertheless, their low gas-sensing performance in terms of low response, partial recovery, and poor selectivity obstruct the apprehension as high-performance 2D TMDs gas sensing materials. At this time, we explain the enhancement in gas-sensing performance of molybdenum disulfide (MoS) nanoflakes (NF) by decorating with Lanthanum (La) at room temperature (25 °C). Our experiments show that the dynamic sensing response of the La decorated few-layered MoS (La@MoS) sensor increases by ∼6 times than the pristine few-layered MoS, which positions it first-ever reported values for NO gas detection. The sensitivity of the MoS and La@MoS found 0.627 and 3.346 ppm, respectively, towards NO gas. It is noteworthy that La has introduced to MoS and its selectivity towards the volatile organic compounds (VOCs) and other toxic gases improved drastically. Our outcomes show that the suggested method represents a successful approach for improving the gas sensing response of 2D TMDs sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab9c55DOI Listing

Publication Analysis

Top Keywords

gas sensing
16
room temperature
8
sensing materials
8
gas-sensing performance
8
sensing response
8
few-layered mos
8
mos la@mos
8
gas
6
sensing
5
mos
5

Similar Publications

Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Rational design of heterostructure (HS)-based surface acoustic wave (SAW) smart gas sensors for efficient and accurate subppm level ammonia (NH) detection at room temperature (RT) is of great significance in environmental protection and human safety. This study introduced a novel HS composed of an AlN-based SAW resonator and CuO nanoparticles (NPs) as a chemical interface for NH detection at RT (∼26 °C). The structural, morphological, and chemical compositions were detailly investigated, which demonstrates that the CuO/AlN HS was successfully formed via interfacial modulation.

View Article and Find Full Text PDF

A first-principles study of SOF and SOF adsorption onto PdSe-based monolayers: favorable sensitivity and selectivity by doping single Cu or Rh atom.

Environ Res

January 2025

College of Artificial Intelligence, Southwest University, Chongqing 400715, China; Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, China. Electronic address:

In this first-principles study, we simulate the adsorption of SOF and SOF molecules on the pristine, Cu- and Rh-doped PdSe monolayer, in order to explore their potentials as novel gas sensors for status evaluation of the SF-insulation devices. Single Cu or Rh atom is doped by the replacement of a Se atom within the PdSe surface, with the formation energy of 0.40 and -0.

View Article and Find Full Text PDF

Degradation rates and ageing effects of UV on tyre and road wear particles.

Chemosphere

January 2025

TNO Environmental Modelling, Sensing and Analysis, Princetonlaan 6-8, 3584 CB, Utrecht, the Netherlands. Electronic address:

Tyre and road wear particles (TRWPs) are estimated to be the largest source of microplastics in the environment and due to the intrinsic use of tyres in our society this will continue to grow. Understanding their degradation mechanisms and subsequent accumulation over time is important to gain insights into the fate and impact of these particles in the environment. Accelerated UV-ageing was performed on cryomilled tyre tread particles and TRWPs from a road simulator to investigate the abiotic degradation of rubber.

View Article and Find Full Text PDF

Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!