Fabrication of highly reactive and cost-effective electrode materials is a key to efficient functioning of green energy technologies. Decorating redox-active metal sulfides with conductive dopants is one of the most effective approaches to enhance electric conductivity and consequently boost capacitive properties. Herein, hierarchically hollow AgS-NiCoS architectures are designed with an enhanced conductivity by a simple solvothermal approach. With the favorable porous characteristics and composition, the optimized AgS-NiCoS-5 electrode exhibits higher specific capacitance (276.5 mAh g at a current density of 1 A g), a good rate performance (56.3% capacity retention at 50 A g), and an improved cycling stability (92.4% retention after 2000 cycles). This finding originates from the enhanced charge transportation ability within the hierarchical structure, abundant electroactive sites, and low contact resistance. In addition, a battery supercapacitor device constructed with the AgS-NiCoS-5 as a positive electrode displays a maximum energy density of 63.3Wh kg at an energy density of 821.8 W kg with an excellent cycling stability (89.4% capacity retention after 10 000 cycles). Therefore, the present work puts forward new possibility to develop composite electrodes for energy storage battery-supercapacitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab9c54 | DOI Listing |
Int J Biol Macromol
January 2025
Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:
The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFSci Rep
January 2025
Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!