A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Are surface water characteristics efficient to locate hyporheic biodiversity hotspots? | LitMetric

Are surface water characteristics efficient to locate hyporheic biodiversity hotspots?

Sci Total Environ

Agence de l'Eau Rhône Méditerranée et Corse, 2 allée de Lodz, 69007 Lyon, France.

Published: October 2020

Location of river-groundwater exchange zones and biodiversity hotspot is essential for a river management plan, especially for Mediterranean karstic rivers. This location is often difficult and time-consuming when long river sectors are considered. We studied a 13 km-long sector of the Cèze River (Southern France) located in a karstic canyon. We compared five indicators of river-groundwater exchanges: longitudinal profiles of temperature, electrical conductivity and Rn concentrations in the surface water of the river, chemical characteristics of the hyporheic water and hyporheic biodiversity. Upwelling zones occurred downstream of geomorphological heterogeneities (here at the tail of gravel bars). Surface water chemistry, especially electrical conductivity and Rn concentrations, clearly traces large scale gaining sections, which were not associated to valley narrowing but with lateral springs, suggesting a crucial role of the geological structuration of the karstic plateau of Méjanne-le-Clap. Hyporheic water chemistry fits with the large-scale hydrological pattern, but with a high variability corresponding to local heterogeneities. The stygobite fauna (obligate groundwater organisms) and benthic EPTC (Ephemeroptera, Plecoptera, Trichoptera and Coleoptera) occurred preferentially in the gaining sections fed by groundwater, likely because of oligotrophic water and cooler temperature. The spatial distribution of river-groundwater exchange zone and hyporheic biodiversity may be thus predicted using changes in surface water chemistry, especially for electrical conductivity and Rn concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139930DOI Listing

Publication Analysis

Top Keywords

surface water
16
hyporheic biodiversity
12
electrical conductivity
12
conductivity concentrations
12
water chemistry
12
river-groundwater exchange
8
hyporheic water
8
chemistry electrical
8
gaining sections
8
water
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!